cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001912 Numbers k such that 4*k^2 + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 10, 12, 13, 18, 20, 27, 28, 33, 37, 42, 45, 47, 55, 58, 60, 62, 63, 65, 67, 73, 75, 78, 80, 85, 88, 90, 92, 102, 103, 105, 112, 115, 118, 120, 125, 128, 130, 132, 135, 140, 142, 150, 153, 157, 163, 170, 175, 192, 193, 198, 200
Offset: 1

Views

Author

Keywords

Comments

Complement of A094550. - Hermann Stamm-Wilbrandt, Sep 16 2014
Positive integers whose square is the sum of two triangular numbers in exactly one way (A000217(k) + A000217(k+1) = k*(k+1)/2 + (k+1)*(k+2)/2 = (k+1)^2). In other words, positive integers k such that A052343(k^2) = 1. - Altug Alkan, Jul 06 2016
4*a(n)^2 + 1 = A002496(n+1). - Hal M. Switkay, Apr 03 2022

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 1.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 11.
  • C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002496, A005574, A062325, A090693, A094550, A214517 (first differences).

Programs

  • Magma
    [n: n in [1..100] | IsPrime(4*n^2+1)] // Vincenzo Librandi, Nov 21 2010
    
  • Maple
    A001912 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isprime(4*a^2+1) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Aug 09 2012
  • Mathematica
    Select[Range[200], PrimeQ[4#^2 + 1] &] (* Alonso del Arte, Dec 20 2013 *)
  • PARI
    is(n)=isprime(4*n^2 + 1) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = A005574(n+1)/2.

A114272 Numbers k such that k^2 + 9 is prime.

Original entry on oeis.org

2, 8, 10, 20, 32, 38, 40, 52, 58, 62, 70, 82, 88, 98, 100, 110, 112, 118, 140, 142, 160, 170, 188, 190, 200, 202, 212, 218, 220, 242, 298, 308, 320, 332, 350, 358, 368, 380, 382, 400, 410, 412, 422, 448, 472, 482, 490, 502, 512, 530, 538, 542, 568, 572, 578
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), this sequence (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

Formula

a(n) = 2 * A002970(n). - Michel Marcus, Jan 20 2015

A002972 a(n) is the odd member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.

Original entry on oeis.org

1, 3, 1, 5, 1, 5, 7, 5, 3, 5, 9, 1, 3, 7, 11, 7, 11, 13, 9, 7, 1, 15, 13, 15, 1, 13, 9, 5, 17, 13, 11, 9, 5, 17, 7, 17, 19, 1, 3, 15, 17, 7, 21, 19, 5, 11, 21, 19, 13, 1, 23, 5, 17, 19, 25, 13, 25, 23, 1, 5, 15, 27, 9, 19, 25, 17, 11, 5, 25, 27, 23, 29, 29, 25, 23, 19, 29, 13, 31, 31
Offset: 1

Views

Author

Keywords

Comments

It appears that the terms in this sequence are the absolute values of the terms in A046730. - Gerry Myerson, Dec 02 2010
"the n-th prime of the form 4i+1" is A005098(n). - Rainer Rosenthal, Aug 24 2022

Examples

			The 2nd prime of the form 4i+1 is 13 = 2^2 + 3^2, so a(2)=3.
		

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pmax = 1000; odd[p_] := Module[{k, m}, 2m+1 /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    decomp2sq(p) = {my (m=(p-1)/4, r, x, limit=ceil(sqrt(p))); if (p>4 && denominator(m)==1, forprime (c=2,oo, if (!issquare(Mod(c,p)), r=c; break)); x=lift (Mod(r,p)^m); until (px%2,decomp2sq(p))[1],", "))) \\ Hugo Pfoertner, Aug 27 2022

Formula

a(n) = Min(A173330(n), A002144(n) - A173330(n)). - Reinhard Zumkeller, Feb 16 2010
a(n)^2 + 4*A002973(n)^2 = A002144(n); A002331(n+1) = Min(a(n),2*A002973(n)) and A002330(n+1) = Max(a(n),2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
(a(n) - 1)/2 = A208295(n), n >= 1. - Wolfdieter Lang, Mar 03 2012
a(A267858(k)) == 1 (mod 4), k >= 1. - Wolfdieter Lang, Feb 18 2016

Extensions

Better description from Jud McCranie, Mar 05 2003

A002973 a(n) is half of the even member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 4, 4, 2, 5, 5, 4, 2, 5, 3, 1, 5, 6, 7, 1, 4, 2, 8, 5, 7, 8, 1, 6, 7, 8, 9, 4, 9, 5, 3, 10, 10, 7, 6, 10, 2, 5, 11, 10, 5, 7, 10, 12, 4, 12, 9, 8, 2, 11, 3, 6, 13, 13, 11, 1, 13, 10, 6, 11, 13, 14, 7, 5, 9, 2, 3, 8, 10, 12, 5, 14, 2, 3, 14, 11, 15, 16, 16, 5, 15, 1, 8, 11
Offset: 1

Views

Author

Keywords

Comments

a(n) is odd iff x^2 + y^2 == 5 (mod 8). [Vladimir Shevelev, Jul 12 2009]
A002972(n)^2 + 4*a(n)^2 = A002144(n); A002331(n+1) = Min(A002972(n),2*a(n)) and A002330(n+1) = Max(A002972(n),2*a(n)). [Reinhard Zumkeller, Feb 16 2010]

Examples

			The 3rd prime of the form 4i+1 is 17 = 1^2 + 4^2, so a(3) = 4/2 = 2.
		

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pmax = 1000; k[p_] := Module[{k, m}, k /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    \\ use function decomp2sq from A002972
    forprime (p=5, 1000, if (p%4==1, print1(select(x->!(x%2),decomp2sq(p))[1]/2,", "))) \\ Hugo Pfoertner, Aug 27 2022

Formula

a(n) = Min(A173331(n), A002144(n) - A173331(n)) / 2. [Reinhard Zumkeller, Feb 16 2010]

Extensions

Better description from Jud McCranie, Mar 05 2003

A002971 Numbers k such that 4*k^2 + 25 is prime.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 11, 12, 13, 14, 16, 17, 18, 21, 23, 26, 29, 34, 36, 37, 38, 47, 48, 49, 51, 53, 54, 56, 62, 63, 66, 67, 68, 69, 73, 74, 77, 79, 82, 83, 91, 99, 101, 102, 103, 107, 108, 114, 116, 118, 122, 131, 134, 141, 142, 147, 148, 151, 154, 156, 157, 158, 159, 164
Offset: 1

Views

Author

Keywords

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 1.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

Showing 1-5 of 5 results.