A003269 a(n) = a(n-1) + a(n-4) with a(0) = 0, a(1) = a(2) = a(3) = 1.
0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 345, 476, 657, 907, 1252, 1728, 2385, 3292, 4544, 6272, 8657, 11949, 16493, 22765, 31422, 43371, 59864, 82629, 114051, 157422, 217286, 299915, 413966, 571388, 788674, 1088589, 1502555, 2073943
Offset: 0
Examples
G.f.: x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 10*x^10 + ... The number of compositions of 12 having 4 as a least summand is a(4, 12 -4 + 1) - a(5, 12 - 5 + 1) = A003269(9) - A003520(8) = 7-4 = 3. The compositions are (84), (48) and (444). - _Gregory L. Simay_, Jul 14 2016
References
- A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 120.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..501
- Jarib R. Acosta, Yadira Caicedo, Juan P. Poveda, José L. Ramírez, and Mark Shattuck, Some New Restricted n-Color Composition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.6.4.
- Mudit Aggarwal and Samrith Ram, Generating Functions for Straight Polyomino Tilings of Narrow Rectangles, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See pp. 18, 22.
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- Peter G. Anderson, More Properties of the Zeckendorf Array, Fib. Quart. 52-5 (2014), 15-21. With 2 more initial zeros.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 9.
- Bruce M. Boman, Geometric Capitulum Patterns Based on Fibonacci p-Proportions, Fibonacci Quart. 58 (2020), no. 5, 91-102.
- Russ Chamberlain, Sam Ginsburg and Chi Zhang, Generating Functions and Wilf-equivalence on Theta_k-embeddings, University of Wisconsin, April 2012.
- P. Chinn and S. Heubach, (1, k)-compositions, Congr. Numer. 164 (2003), 183-194. [Local copy]
- Hùng Việt Chu, Nurettin Irmak, Steven J. Miller, László Szalay, and Sindy Xin Zhang, Schreier Multisets and the s-step Fibonacci Sequences, arXiv:2304.05409 [math.CO], 2023. See also Integers (2024) Vol. 24A, Art. No. A7, p. 3.
- Adi Dani, Compositions of natural numbers over arithmetic progressions
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, February 2012.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5.
- R. K. Guy, Letter to N. J. A. Sloane with attachment, 1988
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,3,1).
- J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.
- Brian Hopkins and Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020.
- Jia Huang, Compositions with restricted parts, arXiv:1812.11010 [math.CO], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 377
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Sergey Kirgizov, Q-bonacci words and numbers, arXiv:2201.00782 [math.CO], 2022.
- S. Kitaev, Independent sets on path-schemes, JIS 9 (2006) # 06.2.2 G(x) for M={1,2,3} gives seq. shifted 4 places left
- R. J. Mathar, Paving rectangular regions with rectangular tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 17.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 [math.CO] (2014), eq. (23).
- Flaviano Morone, Ian Leifer, and Hernán A. Makse, Fibration symmetries uncover the building blocks of biological networks, Proceedings of the National Academy of Sciences (2020) Vol. 117, No. 15, 8306-8314.
- Augustine O. Munagi, Euler-type identities for integer compositions via zig-zag graphs, Integers 12 (2012), Paper No. A60, 10 pp.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), #16.8.3.
- Djamila Oudrar and Maurice Pouzet, Ordered structures with no finite monomorphic decomposition. Application to the profile of hereditary classes, arXiv:2312.05913 [math.CO], 2023. See p. 18.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- E. Wilson, The Scales of Mt. Meru
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1).
Crossrefs
Programs
-
Haskell
a003269 n = a003269_list !! n a003269_list = 0 : 1 : 1 : 1 : zipWith (+) a003269_list (drop 3 a003269_list) -- Reinhard Zumkeller, Feb 27 2011
-
Magma
I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1) + Self(n-4) :n in [1..50]]; // Marius A. Burtea, Sep 13 2019
-
Maple
with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 3)}, unlabeled]: seq(count(SeqSetU, size=j), j=4..51); seq(add(binomial(n-3*k,k),k=0..floor(n/3)),n=0..47); # Zerinvary Lajos, Apr 03 2007 A003269:=z/(1-z-z**4); # Simon Plouffe in his 1992 dissertation ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 3)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=3..50); # Zerinvary Lajos, Mar 26 2008 M:= Matrix(4, (i,j)-> if j=1 then [1,0,0,1][i] elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,2]; seq(a(n), n=0..48); # Alois P. Heinz, Jul 27 2008
-
Mathematica
a[0]= 0; a[1]= a[2]= a[3]= 1; a[n_]:= a[n]= a[n-1] + a[n-4]; Table[a[n], {n,0,50}] CoefficientList[Series[x/(1-x-x^4), {x,0,50}], x] (* Zerinvary Lajos, Mar 29 2007 *) Table[Sum[Binomial[n-3*i-1,i], {i,0,(n-1)/3}], {n,0,50}] LinearRecurrence[{1,0,0,1}, {0,1,1,1}, 50] (* Robert G. Wilson v, Jul 12 2014 *) nxt[{a_,b_,c_,d_}]:={b,c,d,a+d}; NestList[nxt,{0,1,1,1},50][[;;,1]] (* Harvey P. Dale, May 27 2024 *)
-
PARI
{a(n) = polcoeff( if( n<0, (1 + x^3) / (1 + x^3 - x^4), 1 / (1 - x - x^4)) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Jul 12 2003 */
-
SageMath
@CachedFunction def a(n): return ((n+2)//3) if (n<4) else a(n-1) + a(n-4) # a = A003269 [a(n) for n in (0..50)] # G. C. Greubel, Jul 25 2022
Formula
G.f.: x/(1-x-x^4).
G.f.: -1 + 1/(1-Sum_{k>=0} x^(4*k+1)).
a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) for n>4.
a(n) = floor(d*c^n + 1/2) where c is the positive real root of -x^4+x^3+1 and d is the positive real root of 283*x^4-18*x^2-8*x-1 (c=1.38027756909761411... and d=0.3966506381592033124...). - Benoit Cloitre, Nov 30 2002
Equivalently, a(n) = floor(c^(n+3)/(c^4+3) + 1/2) with c as defined above (see A086106). - Greg Dresden and Shuer Jiang, Aug 31 2019
a(n) = term (1,2) in the 4 X 4 matrix [1,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
From Paul Barry, Oct 20 2009: (Start)
a(n+1) = Sum_{k=0..n} C((n+3*k)/4,k)*((1+(-1)^(n-k))/2 + cos(Pi*n/2))/2;
a(n+1) = Sum_{k=0..n} C(k,floor((n-k)/3))(2*cos(2*Pi*(n-k)/3)+1)/3. (End)
a(n) = Sum_{j=0..(n-1)/3} binomial(n-1-3*j,j) (cf. A180184). - Vladimir Kruchinin, May 23 2011
A017817(n) = a(-4 - n) * (-1)^n. - Michael Somos, Jul 12 2003
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + x^3)/( x*(2*k+2 + x^3) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013
Appears a(n) = hypergeometric([1/4-n/4,1/2-n/4,3/4-n/4,1-n/4], [1/3-n/3,2/3-n/3,1-n/3], -4^4/3^3) for n>=10. - Peter Luschny, Sep 18 2014
Extensions
Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
Initial 0 prepended by N. J. A. Sloane, Apr 09 2008
Comments