cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 76 results. Next

A000404 Numbers that are the sum of 2 nonzero squares.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178
Offset: 1

Views

Author

Keywords

Comments

From the formula it is easy to see that if k is in this sequence, then so are all odd powers of k. - T. D. Noe, Jan 13 2009
Also numbers whose cubes are the sum of two nonzero squares. - Joe Namnath and Lawrence Sze
A line perpendicular to y=mx has its first integral y-intercept at a^2+b^2. The remaining ones for that slope are multiples of that primitive value. - Larry J Zimmermann, Aug 19 2010
The primes in this sequence are sequence A002313.
Complement of A018825; A025426(a(n)) > 0; A063725(a(n)) > 0. - Reinhard Zumkeller, Aug 16 2011
If the two squares are not equal, then any power is still in the sequence: if k = x^2 + y^2 with x != y, then k^2 = (x^2-y^2)^2 + (2xy)^2 and k^3 = (x(x^2-3y^2))^2 + (y(3x^2-y^2))^2, etc. - Carmine Suriano, Jul 13 2012
There are never more than 3 consecutive terms that differ by 1. Triples of consecutive terms that differ by 1 occur infinitely many times, for example, 2(k^2 + k)^2, (k^2 - 1)^2 + (k^2 + 2 k)^2, and (k^2 + k - 1)^2 + (k^2 + k + 1)^2 for any integer k > 1. - Ivan Neretin, Mar 16 2017 [Corrected by Jerzy R Borysowicz, Apr 14 2017]
Number of terms less than 10^k, k=1,2,3,...: 3, 34, 308, 2690, 23873, 215907, 1984228, ... - Muniru A Asiru, Feb 01 2018
The squares in this sequence are the squares of the so-called hypotenuse numbers A009003. - M. F. Hasler, Jun 20 2025

Examples

			25 = 3^2 + 4^2, therefore 25 is a term. Note that also 25^3 = 15625 = 44^2 + 117^2, therefore 15625 is a term.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 103.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 75, Theorem 4, with Theorem 2, p. 15.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 251, 252.
  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

A001481 gives another version (allowing for zero squares).
Cf. A004431 (2 distinct squares), A063725 (number of representations), A024509 (numbers with multiplicity), A025284, A018825. Also A050803, A050801, A001105, A033431, A084888, A000578, A000290, A057961, A232499, A007692.
Cf. A003325 (analog for cubes), A003336 (analog for 4th powers).
Cf. A009003 (square roots of the squares in this sequence).
Column k=2 of A336725.

Programs

  • GAP
    P:=List([1..10^4],i->i^2);;
    A000404 := Set(Flat(List(P, i->List(P, j -> i+j)))); # Muniru A Asiru, Feb 01 2018
    
  • Haskell
    import Data.List (findIndices)
    a000404 n = a000404_list !! (n-1)
    a000404_list = findIndices (> 0) a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Magma
    lst:=[]; for n in [1..178] do f:=Factorization(n); if IsSquare(n) then for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 1 then Append(~lst, n); break; end if; end for; else t:=0; for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 3 and d[2] mod 2 eq 1 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, n); end if; end if; end for; lst; // Arkadiusz Wesolowski, Feb 16 2017
    
  • Maple
    nMax:=178: A:={}: for i to floor(sqrt(nMax)) do for j to floor(sqrt(nMax)) do if i^2+j^2 <= nMax then A := `union`(A, {i^2+j^2}) else  end if end do end do: A; # Emeric Deutsch, Jan 02 2017
  • Mathematica
    nMax=1000; n2=Floor[Sqrt[nMax-1]]; Union[Flatten[Table[a^2+b^2, {a,n2}, {b,a,Floor[Sqrt[nMax-a^2]]}]]]
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 24 2016 *)
    Module[{upto=200},Select[Union[Total/@Tuples[Range[Sqrt[upto]]^2,2]],#<= upto&]] (* Harvey P. Dale, Sep 18 2021 *)
  • PARI
    is_A000404(n)= for( i=1,#n=factor(n)~%4, n[1,i]==3 && n[2,i]%2 && return); n && ( vecmin(n[1,])==1 || (n[1,1]==2 && n[2,1]%2)) \\ M. F. Hasler, Feb 07 2009
    
  • PARI
    list(lim)=my(v=List(),x2); lim\=1; for(x=1,sqrtint(lim-1), x2=x^2; for(y=1,sqrtint(lim-x2), listput(v,x2+y^2))); Set(v) \\ Charles R Greathouse IV, Apr 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A000404_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            c = False
            for p in (f:=factorint(n)):
                if (q:= p & 3)==3 and f[p]&1:
                    break
                elif q == 1:
                    c = True
            else:
                if c or f.get(2,0)&1:
                    yield n
    A000404_list = list(islice(A000404_gen(),30)) # Chai Wah Wu, Jul 01 2022

Formula

Let k = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 * ... * q_s^b_s with t >= 0, a_i >= 0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j == -1 (mod 4) for j=1..s. Then k is a term iff 1) b_j == 0 (mod 2) for j=1..s and 2) r > 0 or t == 1 (mod 2) (or both).
From Charles R Greathouse IV, Nov 18 2022: (Start)
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533.
There are B(x) = (x/sqrt(log x)) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. (End)

Extensions

Edited by Ralf Stephan, Nov 15 2004
Typo in formula corrected by M. F. Hasler, Feb 07 2009
Erroneous Mathematica program fixed by T. D. Noe, Aug 07 2009
PARI code fixed for versions > 2.5 by M. F. Hasler, Jan 01 2013

A003072 Numbers that are the sum of 3 positive cubes.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434
Offset: 1

Views

Author

Keywords

Comments

A119977 is a subsequence; if m is a term then there exists at least one k>0 such that m-k^3 is a term of A003325. - Reinhard Zumkeller, Jun 03 2006
A025456(a(n)) > 0. - Reinhard Zumkeller, Apr 23 2009
Davenport proved that a(n) << n^(54/47 + e) for every e > 0. - Charles R Greathouse IV, Mar 26 2012

Examples

			a(11) = 73 = 1^3 + 2^3 + 4^3, which is sum of three cubes.
a(15) = 99 = 2^3 + 3^3 + 4^3, which is sum of three cubes.
		

Crossrefs

Subsequence of A004825.
Cf. A003325, A024981, A057904 (complement), A010057, A000578, A023042 (subsequence of cubes).
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
- squares: A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2);
- cubes: A003325 (2, 3), A003072 (3, 3), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3);
- fourth powers: A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4);
- fifth powers: A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5);
- sixth powers: A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6);
- seventh powers: A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7);
- eighth powers: A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003386 (8, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8);
- ninth powers: A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9);
- tenth powers: A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10);
- eleventh powers: A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11).

Programs

  • Haskell
    a003072 n = a003072_list !! (n-1)
    a003072_list = filter c3 [1..] where
       c3 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ a003325_list
    -- Reinhard Zumkeller, Mar 24 2012
  • Maple
    isA003072 := proc(n)
        local x,y,z;
        for x from 1 do
            if 3*x^3 > n then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                if isA000578(n-x^3-y^3) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 1000 do
        if isA003072(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 23 2016
  • Mathematica
    Select[Range[435], (p = PowersRepresentations[#, 3, 3]; (Select[p, #[[1]] > 0 && #[[2]] > 0 && #[[3]] > 0 &] != {})) &] (* Jean-François Alcover, Apr 29 2011 *)
    With[{upto=500},Select[Union[Total/@Tuples[Range[Floor[Surd[upto-2,3]]]^3,3]],#<=upto&]] (* Harvey P. Dale, Oct 25 2021 *)
  • PARI
    sum(n=1,11,x^(n^3),O(x^1400))^3 /* Then [i|i<-[1..#%],polcoef(%,i)] gives the list of powers with nonzero coefficient. - M. F. Hasler, Aug 02 2020 */
    
  • PARI
    list(lim)=my(v=List(),k,t); lim\=1; for(x=1,sqrtnint(lim-2,3), for(y=1, min(sqrtnint(lim-x^3-1,3),x), k=x^3+y^3; for(z=1,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

{n: A025456(n) >0}. - R. J. Mathar, Jun 15 2018

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A003347 Numbers that are the sum of 2 positive 5th powers.

Original entry on oeis.org

2, 33, 64, 244, 275, 486, 1025, 1056, 1267, 2048, 3126, 3157, 3368, 4149, 6250, 7777, 7808, 8019, 8800, 10901, 15552, 16808, 16839, 17050, 17831, 19932, 24583, 32769, 32800, 33011, 33614, 33792, 35893, 40544, 49575, 59050, 59081, 59292, 60073, 62174, 65536, 66825, 75856
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
917552689 is in the sequence as 917552689 = 17^5 + 62^5.
2557575000 is in the sequence as 2557575000 = 45^5 + 75^5.
5828050944 is in the sequence as 5828050944 = 56^5 + 88^5. (End)
		

Crossrefs

Programs

A003327 Numbers that are the sum of 4 positive cubes in 1 or more way.

Original entry on oeis.org

4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 219, 224, 226, 233, 240, 243, 245, 252, 254
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that every number greater than 7373170279850 is in this sequence. [See the paper of the same name. - T. D. Noe, May 25 2017] - Charles R Greathouse IV, Jan 14 2017
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3888 is in the sequence as 3888 = 6^3 + 6^3 + 12^3 + 12^3.
7729 is in the sequence as 7729 = 2^3 + 4^3 + 14^3 + 17^3.
7875 is in the sequence as 7875 = 5^3 + 10^3 + 15^3 + 15^3. (End)
		

Crossrefs

Cf. A025403, A057905 (complement), A025411 (distinct).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • PARI
    list(lim)=my(v=List(),e=1+lim\1,x='x,t); t=sum(i=1,sqrtnint(e-4,3), x^i^3, O(x^e))^4; for(n=4,lim, if(polcoeff(t,n)>0, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2017

Extensions

More terms from Eric W. Weisstein

A000414 Numbers that are the sum of 4 nonzero squares.

Original entry on oeis.org

4, 7, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1608 is in the sequence as 1608 = 18^2 + 20^2 + 20^2 + 22^2.
2140 is in the sequence as 2140 = 21^2 + 21^2 + 23^2 + 27^2.
3298 is in the sequence as 3298 = 25^2 + 26^2 + 29^2 + 34^2. (End)
		

Crossrefs

Cf. A000534 (complement).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    q=16;lst={};Do[Do[Do[Do[z=a^2+b^2+c^2+d^2;If[z<=(q^2)+3,AppendTo[lst,z]],{d,q}],{c,q}],{b,q}],{a,q}];Union@lst (*Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
    Total/@Tuples[Range[10]^2,4]//Union (* Harvey P. Dale, Mar 18 2025 *)
  • PARI
    is(n)=my(k=if(n,n/4^valuation(n,4),2)); k!=2 && k!=6 && k!=14 && !setsearch([0, 1, 3, 5, 9, 11, 17, 29, 41], n) \\ Charles R Greathouse IV, Sep 03 2014
    
  • Python
    limit = 10026 # 10000th term in b-file
    from functools import lru_cache
    nzs = [k*k for k in range(1, int(limit**.5)+2) if k*k + 3 <= limit]
    nzss = set(nzs)
    @lru_cache(maxsize=None)
    def ok(n, m): return n in nzss if m == 1 else any(ok(n-s, m-1) for s in nzs)
    print([n for n in range(4, limit+1) if ok(n, 4)]) # Michael S. Branicky, Apr 07 2021
    
  • Python
    from itertools import count, islice
    def A000414_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:not(n in {0, 1, 3, 5, 9, 11, 17, 29, 41} or n>>((~n&n-1).bit_length()&-2) in {2,6,14}),count(max(startvalue,0)))
    A000414_list = list(islice(A000414_gen(),30)) # Chai Wah Wu, Jul 09 2022

Formula

a(n) = n + O(log n). - Charles R Greathouse IV, Sep 03 2014

Extensions

corrected 6/95

A003328 Numbers that are the sum of 5 positive cubes.

Original entry on oeis.org

5, 12, 19, 26, 31, 33, 38, 40, 45, 52, 57, 59, 64, 68, 71, 75, 78, 82, 83, 89, 90, 94, 96, 97, 101, 108, 109, 115, 116, 120, 127, 129, 131, 134, 135, 136, 138, 143, 145, 146, 150, 152, 153, 155, 157, 162, 164, 169, 171, 172, 176, 181, 183, 188, 190, 192, 194, 195, 199
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
It seems only a finite number N of positive integers are not in this sequence, and thus a(n) = n - N for all sufficiently large n. Is it true that 2243453, last term of A048927, is sufficiently large in that sense? - M. F. Hasler, Jan 04 2023

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3084 is in the sequence as 3084 = 5^3 + 5^3 + 5^3 +  8^3 + 13^3.
4385 is in the sequence as 4385 = 4^3 + 4^3 + 9^3 + 11^3 + 13^3.
5426 is in the sequence as 5426 = 8^3 + 9^3 + 9^3 + 12^3 + 12^3. (End)
		

Crossrefs

Cf. A057906 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • PARI
    select( {is_A003328(n,k=5,m=3,L=sqrtnint(abs(n-k+1),m))=if( n>k*L^m || nM. F. Hasler, Aug 02 2020
    A003328_upto(N,k=5,m=3)=[i|i<-[1..#N=sum(n=1,sqrtnint(N,m),'x^n^m,O('x^N))^k], polcoef(N,i)] \\ M. F. Hasler, Aug 02 2020
    
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement as combs_w_rep
    def aupto(lim):
      s = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
      s2 = filter(lambda x: x<=lim, (sum(c) for c in combs_w_rep(s, 5)))
      s2counts = Counter(s2)
      return sorted(k for k in s2counts)
    print(aupto(200)) # Michael S. Branicky, May 12 2021

A003337 Numbers n which are the sum of 3 nonzero 4th powers.

Original entry on oeis.org

3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177
Offset: 1

Views

Author

Keywords

Comments

Numbers which are in this sequence but not in A047714 must also be the sum of 2 biquadrates, or equal to a fourth power. Among the first 1000 terms of this sequence, this is the case for 4802 = 2*7^4, 57122 = 2*13^4 and 76832 = 2*14^4. - M. F. Hasler, Dec 31 2012
The union of A047714, A336536, and fourth powers of A003294. - Robert Israel, Jul 24 2020
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
194818 is in the sequence as 194818 = 3^4 + 4^4 + 21^4.
480113 is in the sequence as 480113 = 7^4 + 12^4 + 26^4.
693842 is in the sequence as 693842 = 13^4 + 15^4 + 28^4. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Python
    def aupto(lim):
      p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim)
      p2 = set(a+b for a in p1 for b in p1 if a+b <= lim)
      p3 = set(apb+c for apb in p2 for c in p1 if apb+c <= lim)
      return sorted(p3)
    print(aupto(2400)) # Michael S. Branicky, Mar 18 2021

A003329 Numbers that are the sum of 6 positive cubes.

Original entry on oeis.org

6, 13, 20, 27, 32, 34, 39, 41, 46, 48, 53, 58, 60, 65, 67, 69, 72, 76, 79, 83, 84, 86, 90, 91, 95, 97, 98, 102, 104, 105, 109, 110, 116, 117, 121, 123, 124, 128, 130, 132, 135, 136, 137, 139, 142, 143, 144, 146, 147, 151, 153, 154, 156, 158, 160, 161, 162, 163, 165, 170
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1647 is in the sequence as 1647 = 3^3 + 3^3 + 5^3 + 5^3 +  7^3 + 10^3.
3319 is in the sequence as 3319 = 5^3 + 5^3 + 5^3 + 6^3 + 10^3 + 12^3.
4038 is in the sequence as 4038 = 3^3 + 3^3 + 6^3 + 8^3 +  8^3 + 14^3. (End)
		

Crossrefs

Cf. A057907 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • Mathematica
    max = 200; cmax = Ceiling[(max - 5)^(1/3)]; cc = Array[c, 6]; iter = Sequence @@ Transpose[ {cc, Join[{1}, Most[cc]], Table[cmax, {6}]}]; Union[ Reap[ Do[ a = Total[cc^3]; If[a <= max, Sow[a]], Evaluate[iter]]][[2, 1]]] (* Jean-François Alcover, Oct 23 2012 *)
  • PARI
    (A003329_upto(N,k=6,m=3)=[i|i<-[1..#N=sum(n=1,sqrtnint(N,m), 'x^n^m, O('x^N))^k], polcoef(N,i)])(200) \\ M. F. Hasler, Aug 02 2020
    
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement as multi_combs
    def aupto(lim):
      c = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
      s = filter(lambda x: x<=lim, (sum(mc) for mc in multi_combs(c, 6)))
      counts = Counter(s)
      return sorted(k for k in counts)
    print(aupto(170)) # Michael S. Branicky, Jun 13 2021

Extensions

More terms from Eric W. Weisstein

A003346 Numbers that are the sum of 12 positive 4th powers.

Original entry on oeis.org

12, 27, 42, 57, 72, 87, 92, 102, 107, 117, 122, 132, 137, 147, 152, 162, 167, 172, 177, 182, 187, 192, 197, 202, 212, 217, 227, 232, 242, 247, 252, 257, 262, 267, 277, 282, 292, 297, 307, 312, 322, 327, 332, 342, 347, 357, 362, 372, 377, 387, 392, 402, 407, 412, 417
Offset: 1

Views

Author

Keywords

Comments

a(88) = 636 = 5^4 + 11 and a(91) = 651 = 5^4 + 2^4 + 10 are the first two terms not congruent to 2 or 7 (mod 10). - M. F. Hasler, Aug 03 2020

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
3740 is in the sequence as 3740 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 5^4 + 5^4 + 7^4.
4690 is in the sequence as 4690 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 6^4 + 6^4.
7193 is in the sequence as 7193 = 2^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4. (End)
		

Crossrefs

Cf. A000583 (4th powers).
Other numbers that are the sum of k positive m-th powers:
A000404 (k=2, m=2), A000408 (3, 2), A000414 (4, 2), A047700 (k=5, m=2),
A003325 (k=2, m=3), A003072 (k=3, m=3), A003327 .. A003335 (k=4..12, m=3),
A003336 .. A003346 (k=2..12, m=4), A003347 .. A003357 (k=2..12, m=5),
A003358 .. A003368 (k=2..12, m=6), A003369 .. A003379 (k=2..12, m=7),
A003380 .. A003390 (k=2..12, m=8), A003391 .. A004801 (k=2..12, m=9),
A004802 .. A004812 (k=2..12, m=10), A004813 .. A004823 (k=2..12, m=11).

Programs

  • PARI
    (A003346_upto(N, k=12, m=4)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(500) \\ 2nd & 3rd optional arg allow to get other sequences of this group. See A003333 for alternate code. - M. F. Hasler, Aug 03 2020
    
  • Python
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(limit):
        qd = takewhile(lambda x: x <= limit, (k**4 for k in count(1)))
        ss = set(sum(c) for c in mc(qd, 12))
        return sorted(s for s in ss if s <= limit)
    print(aupto(417)) # Michael S. Branicky, Dec 27 2021

A003358 Numbers that are the sum of 2 nonzero 6th powers.

Original entry on oeis.org

2, 65, 128, 730, 793, 1458, 4097, 4160, 4825, 8192, 15626, 15689, 16354, 19721, 31250, 46657, 46720, 47385, 50752, 62281, 93312, 117650, 117713, 118378, 121745, 133274, 164305, 235298, 262145, 262208, 262873, 266240, 277769, 308800, 379793, 524288
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
10069120217 is in the sequence as 10069120217 = 29^6 + 46^6.
139314070233 is in the sequence as 139314070233 = 3^6 + 72^6.
404680615040 is in the sequence as 404680615040 = 22^6 + 86^6. (End)
		

Crossrefs

Cf. A088677 (2 distinct 6th). Supersequence of A106318.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

Extensions

Removed incorrect program. David A. Corneth, Aug 01 2020
Showing 1-10 of 76 results. Next