A004767 a(n) = 4*n + 3.
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0
Examples
G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Stere Ianus, Mihai Visinescu and Gabriel-Eduard Vilcu, Hidden symmetries and Killing tensors on curved spaces, arXiv:0811.3478 [math-ph], 2008. - _Jonathan Vos Post_, Nov 24 2008
- Tanya Khovanova, Recursive Sequences
- Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See p. 8.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a004767 = (+ 3) . (* 4) a004767_list = [3, 7 ..] -- Reinhard Zumkeller, Oct 03 2012
-
Magma
[4*n+3: n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014
-
Maple
seq( 3+4*n, n=0..100 );
-
Mathematica
4 Range[50] - 1 (* Wesley Ivan Hurt, Jul 09 2014 *)
-
PARI
a(n)=4*n+3 \\ Charles R Greathouse IV, Jul 28 2015
-
PARI
Vec((3+x)/(1-x)^2 + O(x^200)) \\ Altug Alkan, Jan 15 2016
-
Python
for n in range(0,50): print(4*n+3, end=', ') # Stefano Spezia, Dec 12 2018
-
Sage
[4*n+3 for n in range(50)] # G. C. Greubel, Dec 09 2018
-
Scala
(0 to 59).map(4 * + 3) // _Alonso del Arte, Dec 12 2018
Formula
G.f.: (3+x)/(1-x)^2. - Paul Barry, Feb 27 2003
a(n) = 2*a(n-1) - a(n-2) for n > 1, a(0) = 3, a(1) = 7. - Philippe Deléham, Nov 03 2008
a(n) = A017137(n)/2. - Reinhard Zumkeller, Jul 13 2010
a(n) = 8*n - a(n-1) + 2 for n > 0, a(0) = 3. - Vincenzo Librandi, Nov 20 2010
a(n) = 3 + A008586(n). - Omar E. Pol, Jul 27 2012
a(n) = A016813(n) + 2. - Jean-Bernard François, Sep 27 2013
a(n) = 4*n - 1, with offset 1. - Wesley Ivan Hurt, Mar 12 2014
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (3 + 4*x)*exp(x).
Sum_{n >= 0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2) - 1))/(4*sqrt(2)) = A181049. (End)
Comments