A005061 a(n) = 4^n - 3^n.
0, 1, 7, 37, 175, 781, 3367, 14197, 58975, 242461, 989527, 4017157, 16245775, 65514541, 263652487, 1059392917, 4251920575, 17050729021, 68332056247, 273715645477, 1096024843375, 4387586157901, 17560804984807, 70274600998837, 281192547174175, 1125052618233181
Offset: 0
Examples
G.f. = x + 7*x^2 + 37*x^3 + 175*x^4 + 781*x^5 + 3367*x^6 + 14197*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- David Applegate, Marc LeBrun, and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- Dominique Désérable, Versatile Topology for Two-Dimensional Cellular Automata, Advances in Cellular Automata, Emergence, Complexity and Computation (ECC Vol 52) Springer, Cham (2025), Ch. 6, pp. 151-186.
- John Elias, Illustration of initial terms: Unfolded Sierpinski triangle or 3-branches tree in square configuration
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.
- Vladeta Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (Russian, translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- Eric Weisstein's World of Mathematics, Power Fractional Parts
- Index entries for linear recurrences with constant coefficients, signature (7,-12).
- Index entries for sequences related to dismal (or lunar) arithmetic
Crossrefs
Programs
-
GAP
List([0..10^2], n->4*n - 3^n); # Muniru A Asiru, Feb 06 2018
-
Magma
[4^n - 3^n: n in [0..25]]; // Vincenzo Librandi, Jun 03 2011
-
Maple
seq(4^n - 3^n, n=0..10^2); # Muniru A Asiru, Feb 06 2018
-
Mathematica
Table[4^n - 3^n, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *) LinearRecurrence[{7,-12},{0,1},30] (* Harvey P. Dale, May 04 2012 *) Table[Numerator[1-(3/4)^n],{n,0,20}] (* see link Wolfram Mathworld - Fred Daniel Kline, Feb 05 2018 *)
-
PARI
a(n)=1<<(n+n)-3^n \\ Charles R Greathouse IV, Jun 16 2011
-
Python
def a(n): return 4**n - 3**n print([a(n) for n in range(23)]) # Michael S. Branicky, Sep 01 2021
Formula
a(n) = 4*a(n-1) + 3^(n-1) for n>=1. - Xavier Acloque, Oct 20 2003
Binomial transform of A001047. - Ross La Haye, Sep 17 2005
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-4*x)-1/(1-3*x).
E.g.f.: exp(4*x)-exp(3*x). (End)
a(n) = 2^n * Sum_{i=0...n} binomial(n,i)*(2^i-1)/2^i. - Geoffrey Critzer, May 09 2009
a(n) = 7*a(n-1) - 12*a(n-2) for n>=2. - Bruno Berselli, Jan 25 2011
From Joe Slater, Jan 15 2017: (Start)
a(n) = 3*a(n-1) + 4^(n-1) for n>=0.
a(n+1) = Sum_{k=0..n} 4^(n-k) * 3^k. (End)
a(n) = -a(-n) * 12^n for all n in Z. - Michael Somos, Jan 22 2017
Comments