cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A008483 Number of partitions of n into parts >= 3.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

a(0) = 1 because the empty partition vacuously has each part >= 3. - Jason Kimberley, Jan 11 2011
Number of partitions where the largest part occurs at least three times. - Joerg Arndt, Apr 17 2011
By removing a single part of size 3, an A026796 partition of n becomes an A008483 partition of n - 3.
For n >= 3 the sequence counts the isomorphism classes of authentication codes AC(2,n,n) with perfect secrecy and with largest probability 0.5 that an interceptor could deceive with a substituted message. - E. Keith Lloyd (ekl(AT)soton.ac.uk).
For n >= 1, also the number of regular graphs of degree 2. - Mitch Harris, Jun 22 2005
(1 + 0*x + 0*x^2 + x^3 + x^4 + x^5 + 2*x^6 + ...) = (1 + x + 2*x^2 + 3*x^3 + 5*x^4 + ...) * 1 / (1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + ...). - Gary W. Adamson, Jun 30 2009
Because the triangle A051031 is symmetric, a(n) is also the number of (n-3)-regular graphs on n vertices. Since the disconnected (n-3)-regular graph with minimum order is 2K_{n-2}, then for n > 4 there are no disconnected (n-3)-regular graphs on n vertices. Therefore for n > 4, a(n) is also the number of connected (n-3)-regular graphs on n vertices. - Jason Kimberley, Oct 05 2009
Number of partitions of n+2 such that 2*(number of parts) is a part. - Clark Kimberling, Feb 27 2014
For n >= 1, a(n) is the number of (1,1)-separable partitions of n, as defined at A239482. For example, the (1,1)-separable partitions of 11 are [10,1], [7,1,2,1], [6,1,3,1], [5,1,4,1], [4,1,2,1,2,1], [3,1,3,1,2,1], so that a(11) = 6. - Clark Kimberling, Mar 21 2014
From Peter Bala, Dec 01 2024: (Start)
Let P(3, n) denote the set of partitions of n into parts k >= 3. Then A000041(n) = (1/2) * Sum_{parts k in all partitions in P(3, n+3)} phi(k), where phi(k) is the Euler totient function (see A000010). For example, with n = 5, there are 3 partitions of n + 3 = 8 into parts greater then 3, namely, 8, 5 + 3 and 4 + 4, and (1/2)*(phi(8) + phi(5) + phi(3) + 2*phi(4)) = 7 = A000041(5). (End)

Crossrefs

Essentially the same sequence as A026796 and A281356.
From Jason Kimberley, Nov 07 2009 and Jan 05 2011 and Feb 03 2011: (Start)
Not necessarily connected simple regular graphs: A005176 (any degree), A051031 (triangular array), specified degree k: A000012 (k=0), A059841 (k=1), this sequence (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7).
2-regular simple graphs: A179184 (connected), A165652 (disconnected), this sequence (not necessarily connected).
2-regular not necessarily connected graphs without multiple edges [partitions without 2 as a part]: this sequence (no loops allowed [without 1 as a part]), A027336 (loops allowed [parts may be 1]).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), this sequence (g=3), A008484 (g=4), A185325 (g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10), ... (End)
Cf. A008284.

Programs

  • Magma
    p := NumberOfPartitions; A008483 :=  func< n | n eq 0 select 1 else n le 2 select 0 else p(n) - p(n-1) - p(n-2) + p(n-3)>; // Jason Kimberley, Jan 11 2011
    
  • Maple
    series(1/product((1-x^i),i=3..50),x,51);
    ZL := [ B,{B=Set(Set(Z, card>=3))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..46); # Zerinvary Lajos, Mar 13 2007
    with(combstruct):ZL2:=[S,{S=Set(Cycle(Z,card>2))}, unlabeled]:seq(count(ZL2,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007
    with(combstruct):a:=proc(m) [A,{A=Set(Cycle(Z,card>m))},unlabeled]; end: A008483:=a(2):seq(count(A008483,size=n),n=0..46); # Zerinvary Lajos, Oct 02 2007
  • Mathematica
    f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 3], {n, 49}] (* Robert G. Wilson v, Jan 31 2011 *)
    Rest[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Length[p]]], {n, 50}]]  (* Clark Kimberling, Feb 27 2014 *)
  • PARI
    a(n) = numbpart(n)-numbpart(n-1)-numbpart(n-2)+numbpart(n-3) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from sympy import partition
    def A008483(n): return partition(n)-partition(n-1)-partition(n-2)+partition(n-3) # Chai Wah Wu, Jun 10 2025

Formula

a(n) = p(n) - p(n - 1) - p(n - 2) + p(n - 3) where p(n) is the number of unrestricted partitions of n into positive parts (A000041).
G.f.: Product_{m>=3} 1/(1-x^m).
G.f.: (Sum_{n>=0} x^(3*n)) / (Product_{k=1..n} (1 - x^k)). - Joerg Arndt, Apr 17 2011
a(n) = A121081(n+3) - A121659(n+3). - Reinhard Zumkeller, Aug 14 2006
Euler transformation of A179184. a(n) = A179184(n) + A165652(n). - Jason Kimberley, Jan 05 2011
a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n^2). - Vaclav Kotesovec, Feb 26 2015
G.f.: exp(Sum_{k>=1} x^(3*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018
a(n) = Sum_{j=0..floor(n/2)} A008284(n-2*j,j). - Gregory L. Simay, Apr 27 2023
G.f.: 1 + Sum_{n >= 1} x^(n+2)/Product_{k = 0..n-1} (1 - x^(k+3)). - Peter Bala, Dec 01 2024

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A295193 Number of regular simple graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
Offset: 1

Views

Author

Álvar Ibeas, Nov 16 2017

Keywords

Examples

			From _Gus Wiseman_, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
  1 2
  3 4
.
  4---1  3---1  2---1
  3---2  4---2  4---3
.
  3---4  4---3  4---2
  |   |  |   |  |   |
  1---2  1---2  1---3
.
  4---3
  | X |
  2---1
(End)
		

Crossrefs

Row sums of A059441.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,9}] (* Gus Wiseman, Dec 19 2018 *)
  • PARI
    \\ See link for program file.
    for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019

Extensions

a(16)-a(18) from Andrew Howroyd, Aug 28 2019

A005177 Number of connected regular graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 4, 17, 22, 167, 539, 18979, 389436, 50314796, 2942198440, 1698517036411, 442786966115560, 649978211591600286, 429712868499646474880, 2886054228478618211088773, 8835589045148342277771518309, 152929279364927228928021274993215, 1207932509391069805495173301992815105, 99162609848561525198669168640159162918815
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Regular simple graphs of any degree: this sequence (connected), A068932 (disconnected), A005176 (not necessarily connected), A275420 (multisets).
Connected regular graphs of any degree with girth at least g: this sequence (g=3), A186724 (g=4), A186725 (g=5), A186726 (g=6), A186727 (g=7), A186728 (g=8), A186729 (g=9).
Connected regular simple graphs: this sequence (any degree), A068934 (triangular array); specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11). - Jason Kimberley, Nov 03 2011

Formula

a(n) = sum of the n-th row of A068934.
a(n) = A165647(n) - A165648(n).
This sequence is the inverse Euler transformation of A165647.

Extensions

More terms from David Wasserman, Mar 08 2002
a(15) from Giovanni Resta, Feb 05 2009
Terms are sums of the output from M. Meringer's genreg software. To complete a(16) it was run by Jason Kimberley, Sep 23 2009
a(0)=1 (due to the empty graph being vacuously connected and regular) inserted by Jason Kimberley, Apr 11 2012
a(17)-a(21) from Andrew Howroyd, Mar 10 2020
a(22)-a(24) from Andrew Howroyd, May 19 2020

A051031 Triangle read by rows: T(n,r) is the number of not necessarily connected r-regular graphs with n nodes, 0 <= r < n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 0, 4, 0, 16, 0, 4, 0, 1, 1, 1, 5, 21, 60, 60, 21, 5, 1, 1, 1, 0, 6, 0, 266, 0, 266, 0, 6, 0, 1, 1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1, 1, 0, 10, 0, 10786, 0, 367860, 0, 10786
Offset: 1

Views

Author

Keywords

Comments

A graph in which every node has r edges is called an r-regular graph. The triangle is symmetric because if an n-node graph is r-regular, than its complement is (n - 1 - r)-regular and two graphs are isomorphic if and only if their complements are isomorphic.
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A295193. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 08 2020

Examples

			T(8,3) = 6. Edge-lists for the 6 3-regular 8-node graphs:
  Graph 1: 12, 13, 14, 23, 24, 34, 56, 57, 58, 67, 68, 78
  Graph 2: 12, 13, 14, 24, 34, 26, 37, 56, 57, 58, 68, 78
  Graph 3: 12, 13, 23, 14, 47, 25, 58, 36, 45, 67, 68, 78
  Graph 4: 12, 13, 23, 14, 25, 36, 47, 48, 57, 58, 67, 68
  Graph 5: 12, 13, 24, 34, 15, 26, 37, 48, 56, 57, 68, 78
  Graph 6: 12, 23, 34, 45, 56, 67, 78, 18, 15, 26, 37, 48.
Triangle starts
  1;
  1, 1;
  1, 0, 1;
  1, 1, 1,  1;
  1, 0, 1,  0,    1;
  1, 1, 2,  2,    1,    1;
  1, 0, 2,  0,    2,    0,    1;
  1, 1, 3,  6,    6,    3,    1,    1;
  1, 0, 4,  0,   16,    0,    4,    0,  1;
  1, 1, 5, 21,   60,   60,   21,    5,  1, 1;
  1, 0, 6,  0,  266,    0,  266,    0,  6, 0, 1;
  1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1;
  ...
		

Crossrefs

Row sums give A005176.
Regular graphs of degree k: A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).

Formula

T(n,r) = A068934(n,r) + A068933(n,r).

Extensions

More terms and comments from David Wasserman, Feb 22 2002
More terms from Eric W. Weisstein, Oct 19 2002
Description corrected (changed 'orders' to 'degrees') by Jason Kimberley, Sep 06 2009
Extended to the sixteenth row (in the b-file) by Jason Kimberley, Sep 24 2009

A319190 Number of regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 3, 19, 879, 5280907, 1069418570520767
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 19 regular hypergraphs:
                 {{1,2,3}}
                {{1},{2,3}}
                {{2},{1,3}}
                {{3},{1,2}}
               {{1},{2},{3}}
            {{1},{2,3},{1,2,3}}
            {{2},{1,3},{1,2,3}}
            {{3},{1,2},{1,2,3}}
            {{1,2},{1,3},{2,3}}
           {{1},{2},{3},{1,2,3}}
           {{1},{2},{1,3},{2,3}}
           {{1},{3},{1,2},{2,3}}
           {{2},{3},{1,2},{1,3}}
        {{1,2},{1,3},{2,3},{1,2,3}}
       {{1},{2},{1,3},{2,3},{1,2,3}}
       {{1},{3},{1,2},{2,3},{1,2,3}}
       {{2},{3},{1,2},{1,3},{1,2,3}}
      {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{1,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,2^n}],{n,5}]

Extensions

a(6) from Andrew Howroyd, Mar 12 2020

A068932 Number of disconnected regular graphs with n nodes.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 2, 5, 4, 9, 7, 23, 18, 74, 106, 619, 2076, 22526, 112834, 4799825, 31138965, 4207943011, 115979718015, 13482672647959
Offset: 0

Views

Author

David Wasserman, Mar 08 2002

Keywords

Comments

A graph is called regular if every node has the same number of edges.
Row sums of A068933.

Crossrefs

Formula

a(n) = A005176(n) - A005177(n).

Extensions

a(22) corrected and a(23) appended Sep 28 2009, a(24) appended Nov 24 2009, by Jason Kimberley.
a(0)=0 (due to the empty graph being vacuously connected) inserted by Jason Kimberley, Apr 11 2012

A033301 Number of 4-valent (or quartic) graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 60, 266, 1547, 10786, 88193, 805579, 8037796, 86223660, 985883873, 11946592242, 152808993767, 2056701139136, 29051369533596, 429669276147047, 6640178380127244, 107026751932268789, 1796103830404560857, 31334029441145918974, 567437704731717802783
Offset: 0

Views

Author

Ronald C. Read

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (n-5)-regular graphs on n vertices. - Jason Kimberley, Sep 22 2009

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

4-regular simple graphs: A006820 (connected), A033483 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7).

Programs

Formula

Euler transform of A006820. - Martin Fuller, Dec 04 2006

Extensions

a(16) from Axel Kohnert (kohnert(AT)uni-bayreuth.de), Jul 24 2003
a(17)-a(19) from Jason Kimberley, Sep 12 2009
a(20)-a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010
a(22) from Jason Kimberley, Oct 15 2011
a(22) corrected and a(23)-a(28) from Andrew Howroyd, Mar 08 2020

A319189 Number of uniform regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 2, 3, 10, 29, 3780, 5012107
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is uniform if all edges have the same size, and regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.
Also the number of 0-1 matrices with n columns, all distinct rows, no zero columns, equal row-sums, and equal column-sums, up to a permutation of the rows.

Examples

			The a(4) = 10 edge-sets:
               {{1,2,3,4}}
              {{1,2},{3,4}}
              {{1,3},{2,4}}
              {{1,4},{2,3}}
            {{1},{2},{3},{4}}
        {{1,2},{1,3},{2,4},{3,4}}
        {{1,2},{1,4},{2,3},{3,4}}
        {{1,3},{1,4},{2,3},{2,4}}
    {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Inequivalent representatives of the a(4) = 10 matrices:
  [1 1 1 1]
.
  [1 1 0 0] [1 0 1 0] [1 0 0 1]
  [0 0 1 1] [0 1 0 1] [0 1 1 0]
.
  [1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0]
  [0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1]
  [0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1]
  [0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1]
.
  [1 1 0 0]
  [1 0 1 0]
  [1 0 0 1]
  [0 1 1 0]
  [0 1 0 1]
  [0 0 1 1]
		

Crossrefs

Uniform hypergraphs are counted by A306021. Unlabeled uniform regular multiset partitions are counted by A319056. Regular graphs are A295193. Uniform clutters are A299353.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}]

Extensions

a(7) from Jinyuan Wang, Jun 20 2020

A185314 Number of, not necessarily connected, regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 2, 7, 3, 14, 6, 44, 37, 350, 1616, 18042, 193919, 2867779, 32674078, 1581632332, 6705889886
Offset: 0

Views

Author

Jason Kimberley, May 23 2012

Keywords

Crossrefs

Regular graphs, of any degree, with girth at least 4: A186724 (connected), A185214 (disconnected), this sequence (not-necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 4: this sequence (any k), A185304 (triangle); specified degree k: A008484 (k=2), A185334 (k=3), A185344 (k=4), A185354 (k=5), A185364 (k=6).
Not necessarily connected regular simple graphs with girth at least g: A005176 (g=3), this sequence (g=4), A185315 (g=5), A185316 (g=6), A185317 (g=7), A185318 (g=8), A185319 (g=9).

Formula

a(n) = A186724(n) + A185214(n).
a(n) is the sum of the n-th row of A185304.
Showing 1-10 of 44 results. Next