A005418 Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.
1, 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, 2080, 4160, 8256, 16512, 32896, 65792, 131328, 262656, 524800, 1049600, 2098176, 4196352, 8390656, 16781312, 33558528, 67117056, 134225920, 268451840, 536887296, 1073774592, 2147516416, 4295032832
Offset: 1
Examples
a(5) = 10 because there are 16 compositions of 5 (shown as <vectors>) but only 10 equivalence classes (shown as {sets}): {<5>}, {<4,1>,<1,4>}, {<3,2>,<2,3>}, {<3,1,1>,<1,1,3>}, {<1,3,1>},{<2,2,1>,<1,2,2>}, {<2,1,2>}, {<2,1,1,1>,<1,1,1,2>}, {<1,2,1,1>,<1,1,2,1>}, {<1,1,1,1,1>}. - _Geoffrey Critzer_, Nov 02 2012 G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 36*x^7 + 72*x^8 + ... - _Michael Somos_, Jun 24 2018 From _Robert A. Russell_, Oct 28 2018: (Start) For a(5)=10, the 4 achiral patterns (set partitions) are AAAAA, AABAA, ABABA, and ABBBA. The 6 chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The colors are permutable. For n=4 and a(n+1)=10, the 4 achiral colorings are AAAA, ABBA, BAAB, and BBBB. The 6 achiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. The colors are not permutable. (End)
References
- K. Balasubramanian, "Combinatorial Enumeration of Chemical Isomers", Indian J. Chem., (1978) vol. 16B, pp. 1094-1096. See page 1095.
- Wayne M. Dymacek, Steinhaus graphs. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 399--412, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561065 (81f:05120)
- Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
- Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 46 (first publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
- C. A. Pickover, Keys to Infinity, Wiley 1995, p. 75.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 151 and 733.
- Andrei Asinowski and Alon Regev, Triangulations with Few Ears: Symmetry Classes and Disjointness, Integers 16 (2016), #A5.
- A. T. Balaban, Chemical graphs. Part 50. Symmetry and enumeration of fibonacenes (unbranched catacondensed benzenoids isoarithmic with helicenes and zigzag catafusenes), MATCH: Commun. Math. Comput. Chem., 24 (1989) 29-38.
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- A. P. Burger, M. Van Der Merwe, and J. H. Van Vuuren, An asymptotic analysis of the evolutionary spatial prisoner's dilemma on a path, Discrete Appl. Math. 160, No. 15, 2075-2088 (2012), Table 3.1.
- C. Ceballos, F. Santos, and G. Ziegler, Many Non-equivalent Realizations of the Associahedron, arXiv:1109.5544 [math.MG], 2011-2013; pp. 15 and 26.
- P. M. Cohn, Two embedding theorems for Jordan algebras, Proceedings of the London Mathematical Society, Volume s3-9, Issue 4, October 1959, pp. 503-524.
- Jacob Crabtree, Another Enumeration of Caterpillar Trees, arXiv:1810.11744 [math.CO], 2018.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, E. Brendsdal, Zhang Fuji, Guo Xiaofeng, and R. Tosic, Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
- Miroslav Marinov Dimitrov, Designing Boolean Functions and Digital Sequences for Cryptology and Communications, Ph. D. Dissertation, Bulgarian Acad. Sci. (Sofia, Bulgaria 2023).
- A. A. Dobrynin, On the Wiener index of fibonacenes, MATCH: Commun. Math. Comput. Chem, 64 (2010), 707-726.
- Vladimir Dotsenko and Irvin Roy Hentzel, On the conjecture of Kashuba and Mathieu about free Jordan algebras, arXiv:2507.00437 [math.RA], 2025. See p. 14.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
- T. A. Gittings, Minimum braids: a complete invariant of knots and links, arXiv:math/0401051 [math.GT], 2004. - _N. J. A. Sloane_, Jan 18 2013
- R. K. Guy, Letter to N. J. A. Sloane, Nov 1978.
- Frank Harary and Allen J. Schwenk, The number of caterpillars, Discrete Mathematics, Volume 6, Issue 4, 1973, 359-365.
- N. Hoffman, Binary grids and a related counting problem, Two-Year College Math. J. 9 (1978), 267-272.
- S. V. Jablan, Geometry of Links, XII Yugoslav Geometric Seminar (Novi Sad, 1998), Novi Sad J. Math. 29 (1999), no. 3, 121-139.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Isaac B. Michael and M. R. Sepanski, Net regular signed trees, Australasian Journal of Combinatorics, Volume 66(2) (2016), 192-204.
- U. N. Peled and F. Sun, Enumeration of difference graphs, Discrete Appl. Math., 60 (1995), 311-318.
- Paulo Renato da Costa Pereira, Lilian Markenzon and Oswaldo Vernet, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Hans Rademacher, On the number of certain types of polyhedra, Illinois Journal of Mathematics 9.3 (1965): 361-380. Reprinted in Coll. Papers, Vol II, MIT Press, 1974, pp. 544-564. See Theorem 8, Eq. 14.3.
- A. Regev, Remarks on two-eared triangulations, arXiv preprint arXiv:1309.0743 [math.CO], 2013-2014.
- Suthee Ruangwises, The Landscape of Computing Symmetric n-Variable Functions with 2n Cards, arXiv:2306.13551 [cs.CR], 2023.
- A. I. Shirshov, On special J-rings, Mat. Sb. (N.S.), 38(80), 1956, pp. 149-166.
- N. J. A. Sloane, Classic Sequences
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), Article #00.1.1.
- Eric Weisstein's World of Mathematics, Barker Code.
- Eric Weisstein's World of Mathematics, Bishops Problem.
- Eric Weisstein's World of Mathematics, Caterpillar Graph.
- Eric Weisstein's World of Mathematics, Centipede Graph.
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Ladder Graph.
- Eric Weisstein's World of Mathematics, Losanitsch's Triangle.
- Eric Weisstein's World of Mathematics, Planar Embedding.
- A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 87 (2014), 1260-1264; see Tables 1 and 2 (and text). - _N. J. A. Sloane_, Mar 26 2015
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
Crossrefs
Programs
-
Haskell
a005418 n = sum $ a034851_row (n - 1) -- Reinhard Zumkeller, Jan 14 2012
-
Maple
A005418 := n->2^(n-2)+2^(floor(n/2)-1): seq(A005418(n), n=1..34);
-
Mathematica
LinearRecurrence[{2,2,-4}, {1,2,3}, 40] (* or *) Table[2^(n-2)+2^(Floor[n/2]-1), {n,40}] (* Harvey P. Dale, Jan 18 2012 *)
-
PARI
A005418(n)= 2^(n-2) + 2^(n\2-1); \\ Joerg Arndt, Sep 16 2013
-
Python
def A005418(n): return 1 if n == 1 else 2**((m:= n//2)-1)*(2**(n-m-1)+1) # Chai Wah Wu, Feb 03 2022
Formula
a(n) = 2^(n-2) + 2^(floor(n/2) - 1).
G.f.: -x*(-1 + 3*x^2) / ( (2*x - 1)*(2*x^2 - 1) ). - Simon Plouffe in his 1992 dissertation
G.f.: x*(1+2*x)*(1-3*x^2)/((1-4*x^2)*(1-2*x^2)), not reduced. - Wolfdieter Lang, May 08 2001
a(n) = 6*a(n - 2) - 8*a(n - 4). a(2*n) = A063376(n - 1) = 2*a(2*n - 1); a(2*n + 1) = A007582(n). - Henry Bottomley, Jul 14 2001
a(n+2) = 2*a(n+1) - A077957(n) with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Oct 24 2008
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Jaume Oliver Lafont, Dec 05 2008
G.f.: G(0); G(k) = 1 + 2*x/(1 - x*(1+2^(k+1))/(x*(1+2^(k+1)) + (1+2^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2011
a(2*n) = 2*a(2*n-1) and a(2*n+1) = a(2*n) + 4^(n-1) with a(1) = 1. - Johannes W. Meijer, Aug 26 2013
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A131577(n) + A016116(n)) / 2 = A131577(n) - A122746(n-3) = A122746(n-3) + A016116(n), for set partitions with up to two subsets.
a(n+1) = (A000079(n) + A060546(n)) / 2 = A000079(n) - A122746(n-2) = A122746(n-2) + A060546(n), for two colors that do not permute.
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=2 is the maximum number of colors, S2(n,k) is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n+1) = (k^n + k^ceiling(n/2)) / 2, where k=2 is number of colors we can use. (End)
E.g.f.: (cosh(2*x) + 2*cosh(sqrt(2)*x) + sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 3)/4. - Stefano Spezia, Jun 01 2022
Comments