A006013 a(n) = binomial(3*n+1,n)/(n+1).
1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, 142498692, 859515920, 5225264024, 31983672534, 196947587823, 1219199353190, 7583142491925, 47365474641870, 296983176369495, 1868545312633440, 11793499763070480
Offset: 0
Examples
a(3) = 30 since the top row of Q^3 = (12, 12, 5, 1). G.f. = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 + 21318*x^7 + ... - _Michael Somos_, May 15 2022
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms n = 0..100 from T. D. Noe)
- A. Aggarwal, Armstrong's Conjecture for (k, mk+1)-Core Partitions, arXiv:1407.5134 [math.CO], 2014.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, (2016), #16.3.5.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- W. G. Brown, Enumeration of non-separable planar maps. [Annotated scanned copy]
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, 19 (2016), #16.6.1.
- F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
- F. Chapoton, F. Hivert, and J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv:1307.0092 [math.CO], 2013.
- F. Chapoton and S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv:1310.4521 [math.CO], 2013.
- Jins de Jong, Alexander Hock, and Raimar Wulkenhaar, Catalan tables and a recursion relation in noncommutative quantum field theory, arXiv:1904.11231 [math-ph], 2019.
- C. Defant and N. Kravitz, Stack-sorting for words, arXiv:1809.09158 [math.CO], 2018.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch, S. Feretic and M. Noy, Diagonally convex directed polyominoes and even trees: a bijection and related issues, Discrete Math., 256 (2002), 645-654.
- I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 432 [broken link].
- Pakawut Jiradilok, Large-scale Rook Placements, arXiv:2204.00615 [math.CO], 2022.
- S. Kitaev and A. de Mier, Enumeration of fixed points of an involution on beta(1, 0)-trees, arXiv:1210.2618 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 31 2012
- Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377-387. MR3090510. See Theorem 1. - _N. J. A. Sloane_, May 19 2014
- Don Knuth, 20th Anniversary Christmas Tree Lecture.
- Philippe Leroux, An algebraic framework of weighted directed graphs, Int. J. Math. Math. Sci. 58. (2003).
- Philippe Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs, arXiv:0709.3453 [math-ph], 2008.
- Ho-Hon Leung and Thotsaporn "Aek" Thanatipanonda, A Probabilistic Two-Pile Game, arXiv:1903.03274 [math.CO], 2019.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Hugo Mlodecki, Decompositions of packed words and self duality of Word Quasisymmetric Functions, arXiv:2205.13949 [math.CO], 2022. See Table 4 p. 20.
- W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, arXiv:1304.6544 [math.PR], 2013.
- Henri Muehle and Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles, arXiv:1803.00540 [math.CO], 2018.
- Liviu I. Nicolaescu, Counting Morse functions on the 2-sphere, arXiv:math/0512496 [math.GT], 2005.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
- Isaac Owino Okoth, Bijections of k-plane trees, Open J. Discret. Appl. Math. (2022) Vol. 5, No. 1, 29-35.
- J.-B. Priez and A. Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
- Helmut Prodinger, On some questions by Cameron about ternary paths --- a linear algebra approach, arXiv:1910.02320 [math.CO], 2019.
- Helmut Prodinger, Sarah J. Selkirk, and Stephan Wagner, On two subclasses of Motzkin paths and their relation to ternary trees, arXiv:1902.01681 [math.CO], 2019.
- Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
- D. G. Rogers, Comments on A111160, A055113 and A006013.
- Joe Sawada, Jackson Sears, Andrew Trautrim, and Aaron Williams, Demystifying our Grandparent's De Bruijn Sequences with Concatenation Trees, arXiv:2308.12405 [math.CO], 2023.
- Michael Somos, Number Walls in Combinatorics.
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 7.
- Zhujun Zhang, A Note on Counting Dependency Trees, arXiv:1708.08789 [math.GM], 2017. See p. 3.
- S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages.
Crossrefs
Programs
-
Haskell
a006013 n = a007318 (3 * n + 1) n `div` (n + 1) a006013' n = a258708 (2 * n + 1) n -- Reinhard Zumkeller, Jun 22 2015
-
Magma
[Binomial(3*n+1,n)/(n+1): n in [0..30]]; // Vincenzo Librandi, Mar 29 2015
-
Mathematica
Binomial[3#+1,#]/(#+1)&/@Range[0,30] (* Harvey P. Dale, Mar 16 2011 *)
-
PARI
A006013(n) = binomial(3*n+1,n)/(n+1) \\ M. F. Hasler, Jan 08 2024
-
Python
from math import comb def A006013(n): return comb(3*n+1,n)//(n+1) # Chai Wah Wu, Jul 30 2022
-
Sage
def A006013_list(n) : D = [0]*(n+1); D[1] = 1 R = []; b = false; h = 1 for i in range(2*n) : for k in (1..h) : D[k] += D[k-1] if b : R.append(D[h]); h += 1 b = not b return R A006013_list(23) # Peter Luschny, May 03 2012
Formula
G.f. is square of g.f. for ternary trees, A001764 [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
Convolution of A001764 with itself: 2*C(3*n + 2, n)/(3*n + 2), or C(3*n + 2, n+1)/(3*n + 2).
G.f.: (4/(3*x)) * sin((1/3)*arcsin(sqrt(27*x/4)))^2.
G.f.: A(x)/x with A(x)=x/(1-A(x))^2. - Vladimir Kruchinin, Dec 26 2010
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) is the top left term in M^n, where M is the infinite square production matrix:
2, 1, 0, 0, 0, ...
3, 2, 1, 0, 0, ...
4, 3, 2, 1, 0, ...
5, 4, 3, 2, 1, ...
... (End)
From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is the sum of top row terms in Q^n, where Q is the infinite square production matrix as follows:
1, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
3, 3, 2, 1, 0, ...
4, 4, 3, 2, 1, ...
... (End)
D-finite with recurrence: 2*(n+1)*(2n+1)*a(n) = 3*(3n-1)*(3n+1)*a(n-1). - R. J. Mathar, Dec 17 2011
a(n) = 2*A236194(n)/n for n > 0. - Bruno Berselli, Jan 20 2014
a(n) = A258708(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015
From Ilya Gutkovskiy, Dec 29 2016: (Start)
E.g.f.: 2F2([2/3, 4/3]; [3/2,2]; 27*x/4).
a(n) ~ 3^(3*n+3/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). (End)
a(n) = A110616(n+1, 1). - Ira M. Gessel, Jan 04 2018
0 = v0*(+98415*v2 -122472*v3 +32340*v4) +v1*(+444*v3 -2968*v4) +v2*(-60*v2 +56*v3 +64*v4) where v0=a(n)^2, v1=a(n)*a(n+1), v2=a(n+1)^2, v3=a(n+1)*a(n+2), v4=a(n+2)^2 for all n in Z if a(-1)=-2/3 and a(n)=0 for n<-1. - Michael Somos, May 15 2022
a(n) = (1/4^n) * Product_{1 <= i <= j <= 2*n} (2*i + j + 2)/(2*i + j - 1). Cf. A000260. - Peter Bala, Feb 21 2023
From Karol A. Penson, Jun 02 2023: (Start)
a(n) = Integral_{x=0..27/4} x^n*W(x) dx, where
W(x) = (((9 + sqrt(81 - 12*x))^(2/3) - (9 - sqrt(81 - 12*x))^(2/3)) * 2^(1/3) * 3^(1/6)) / (12 * Pi * x^(1/3)), for x in (0, 27/4).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 27/4. At x = 27/4 the first derivative of W(x) is infinite. (End)
G.f.: hypergeometric([2/3,1,4/3], [3/2,2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = A024485(n+1)/3. - Michael Somos, Oct 14 2024
G.f.: (Sum_{n >= 0} binomial(3*n+2, n)*x^n) / (Sum_{n >= 0} binomial(3*n, n)*x^n) = (B(x) - 1)/(x*B(x)), where B(x) = Sum_{n >= 0} binomial(3*n, n)/(2*n+1) * x^n is the g.f. of A001764. - Peter Bala, Dec 13 2024
The g.f. A(x) is uniquely determined by the conditions A(0) = 1 and [x^n] A(x)^(-n) = -2 for all n >= 1. Cf. A006632. - Peter Bala, Jul 24 2025
Extensions
Edited by N. J. A. Sloane, Feb 21 2008
Comments