A006125 a(n) = 2^(n*(n-1)/2).
1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0
Examples
From _Gus Wiseman_, Feb 11 2021: (Start) This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are: {} {} {} {} {12} {12} {13} {23} {12,13} {12,23} {13,23} {12,13,23} This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices. {} {} {} {11} {11} {12} {22} {11,12} {11,22} {12,22} {11,12,22} (End)
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
- G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
- J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..50
- F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- Anders Björner and Richard P. Stanley, A combinatorial miscellany, 2010.
- Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
- Taylor Brysiewicz and Fulvio Gesmundo, The Degree of Stiefel Manifolds, arXiv:1909.10085 [math.AG], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Mihai Ciucu, Perfect matchings of cellular graphs, J. Algebraic Combin., 5 (1996) 87-103.
- Mihai Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97.
- Thierry de la Rue and Élise Janvresse, Pavages aléatoires par touillage de dominos, Images des Mathématiques, CNRS, 2023. In French.
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part I, Journal of Algebraic Combinatorics 1-2, 111-132 (1992).
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part II, Journal of Algebraic Combinatorics 1-3, 219-234 (1992).
- Sen-Peng Eu and Tung-Shan Fu, A simple proof of the Aztec diamond theorem, arXiv:math/0412041 [math.CO], 2004.
- D. Grensing, I. Carlsen, and H.-Chr. Zapp, Some exact results for the dimer problem on plane lattices with non-standard boundaries, Phil. Mag. A, 41:5 (1980), 777-781.
- Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
- William Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science, Vol. 319, No. 1-3 (2004), pp. 29-57, arXiv preprint, arXiv:math/0304090 [math.CO], 2003.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- W. H. Mills, David P. Robbins, and Howard Rumsey, Jr., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- James Propp, Enumeration of matchings: problems and progress, arXiv:math/9904150 [math.CO], 1999.
- James Propp, Lessons I learned from Richard Stanley, arXiv preprint [math.CO], 2015.
- James Propp and R. P. Stanley, Domino tilings with barriers, arXiv:math/9801067 [math.CO], 1998.
- Steven S. Skiena, Generating graphs.
- David E. Speyer, Perfect matchings and the octahedron recurrence, Journal of Algebraic Combinatorics, Vol. 25, No. 3 (2007), pp. 309-348, arXiv preprint, arXiv:math/0402452 [math.CO], 2004.
- Jan Tóth and Ondřej Kuželka, Complexity of Weighted First-Order Model Counting in the Two-Variable Fragment with Counting Quantifiers: A Bound to Beat, arXiv:2404.12905 [cs.LO], 2024. See p. 24.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Connected Graph.
- Eric Weisstein's World of Mathematics, Labeled Graph.
- Eric Weisstein's World of Mathematics, Symmetric Matrix.
- Doron Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954.
- Index entries for sequences related to dominoes
Crossrefs
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The directed version is A002416.
The covering case is A006129.
Row sums of A143543.
The case of connected edge set is A287689.
Programs
-
Haskell
[2^(n*(n-1) `div` 2) | n <- [0..20]] -- José E. Solsona, Feb 05 2023
-
Magma
[2^(n*(n-1) div 2): n in [0..20]]; // Vincenzo Librandi, Jul 03 2019
-
Mathematica
Join[{1}, 2^Accumulate[Range[0, 20]]] (* Harvey P. Dale, May 09 2013 *) Table[2^(n (n - 1) / 2), {n, 0, 20}] (* Vincenzo Librandi, Jul 03 2019 *) Table[2^Binomial[n, 2], {n, 0, 15}] (* Eric W. Weisstein, Jan 03 2021 *) 2^Binomial[Range[0, 15], 2] (* Eric W. Weisstein, Jan 03 2021 *) Prepend[Table[Count[Tuples[{0, 1}, {n, n}], ?SymmetricMatrixQ], {n, 5}], 1] (* _Eric W. Weisstein, Jan 03 2021 *) Prepend[Table[Count[Tuples[{-1, 1}, {n, n}], ?PositiveDefiniteMatrixQ], 1], {n, 4}] (* _Eric W. Weisstein, Jan 03 2021 *)
-
Maxima
A006125(n):=2^(n*(n-1)/2)$ makelist(A006125(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
-
PARI
a(n)=1<
Charles R Greathouse IV, Jun 15 2011 -
Python
def A006125(n): return 1<<(n*(n-1)>>1) # Chai Wah Wu, Nov 09 2023
Formula
Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024
Extensions
More terms from Vladeta Jovovic, Apr 09 2000
Comments