cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A121039 Multiples of 19 containing a 19 in their decimal representation.

Original entry on oeis.org

19, 190, 1197, 1900, 1919, 1938, 1957, 1976, 1995, 3192, 3819, 4199, 5719, 6194, 7619, 9196, 9519, 11191, 11419, 11913, 11932, 11951, 11970, 11989, 12198, 13319, 14193, 15219, 17119, 17195, 19000, 19019, 19038, 19057, 19076, 19095, 19114
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[19*Range[1500],MemberQ[Partition[IntegerDigits[#],2,1],{1,9}]&] (* Harvey P. Dale, Jun 08 2014 *)
  • PARI
    is(n)=if(n%19, return(0)); while(n>18, if(n%100==19, return(1)); n\=10); 0 \\ Charles R Greathouse IV, Feb 12 2017

Formula

a(n) ~ 19n. - Charles R Greathouse IV, Feb 12 2017

Extensions

Corrected by T. D. Noe, Oct 25 2006

A008602 Multiples of 20.

Original entry on oeis.org

0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000
Offset: 0

Views

Author

Keywords

Comments

The multiples of 20 are exactly those integers which do not have a multiple whose decimal digits are of alternating parity. (International Mathematical Olympiad 2004, problem 6, see A110303) - Joseph Myers, Jul 13 2004

Crossrefs

Programs

Formula

G.f.: 20*x/(x - 1)^2. - Vincenzo Librandi, Jun 10 2013
E.g.f.: 20*x*exp(x). - Stefano Spezia, Feb 20 2020
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 20*n = 2*A008592(n) = 10*A005843(n) = A317095(n)/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A008603 Multiples of 21.

Original entry on oeis.org

0, 21, 42, 63, 84, 105, 126, 147, 168, 189, 210, 231, 252, 273, 294, 315, 336, 357, 378, 399, 420, 441, 462, 483, 504, 525, 546, 567, 588, 609, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 987, 1008, 1029, 1050, 1071, 1092
Offset: 0

Views

Author

Keywords

Comments

Sum of the numbers from 3*(n-1) to 3*(n+1). - Bruno Berselli, Oct 25 2018

Crossrefs

Programs

Formula

G.f.: 21*x/(1-x)^2. - Vincenzo Librandi, Jun 10 2013
From Elmo R. Oliveira, Apr 08 2025: (Start)
E.g.f.: 21*x*exp(x).
a(n) = A008585(A008589(n)) = A008589(A008585(n)). (End)

A094053 Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2004

Keywords

Comments

T(n,k) = A003991(n-1,k) for 1 <= k < n;
T(n,k) = T(n,n-1-k) for k < n;
T(n,1) = n-1; T(n,n) = 0; T(n,2) = A005843(n-2) for n > 1;
T(n,3) = A008585(n-3) for n>2; T(n,4) = A008586(n-4) for n > 3;
T(n,5) = A008587(n-5) for n>4; T(n,6) = A008588(n-6) for n > 5;
T(n,7) = A008589(n-7) for n>6; T(n,8) = A008590(n-8) for n > 7;
T(n,9) = A008591(n-9) for n>8; T(n,10) = A008592(n-10) for n > 9;
T(n,11) = A008593(n-11) for n>10; T(n,12) = A008594(n-12) for n > 11;
T(n,13) = A008595(n-13) for n>12; T(n,14) = A008596(n-14) for n > 13;
T(n,15) = A008597(n-15) for n>14; T(n,16) = A008598(n-16) for n > 15;
T(n,17) = A008599(n-17) for n>16; T(n,18) = A008600(n-18) for n > 17;
T(n,19) = A008601(n-19) for n>18; T(n,20) = A008602(n-20) for n > 19;
Row sums give A000292; triangle sums give A000332;
All numbers m > 0 occur A000005(m) times;
A002378(n) = T(A005408(n),n+1) = n*(n+1).
k-th columns are arithmetic progressions with step k, starting with 0. If a zero is prefixed to the sequence, then we get a new table where the columns are again arithmetic progressions with step k, but starting with k, k=0,1,2,...: 1st column = (0,0,0,...), 2nd column = (1,2,3,...), 3rd column = (2,4,6,8,...), etc. - M. F. Hasler, Feb 02 2013
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) = T(2j,j+m) satisfy: (1/2)T(2j,j+m)^(1/2) = = = i = -i . Matrices for J_1 and J_2 are sparse. These equalities determine the only nonzero entries. - Bradley Klee, Jan 29 2016
T(n+1,k+1) is the number of degrees of freedom of a k-dimensional affine subspace within an n-dimensional vector space. This is most readily interpreted geometrically: e.g. in 3 dimensions a line (1-dimensional subspace) has T(4,2) = 4 degrees of freedom and a plane has T(4,3) = 3. T(n+1,1) = n indicates that points in n dimensions have n degrees of freedom. T(n,n) = 0 for any n as all n-dimensional spaces in an n-dimensional space are equivalent. - Daniel Leary, Apr 29 2020

Examples

			From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
  0;
  1, 0;
  2, 2, 0;
  3, 4, 3, 0;
  4, 6, 6, 4, 0;
  5, 8, 9, 8, 5, 0;
  (...)
If an additional 0 was added at the beginning, this would become:
  0;
  0, 1;
  0, 2, 2;
  0, 3, 4; 3;
  0, 4, 6, 6, 4;
  0, 5, 8, 9, 8, 5;
  ... (End)
		

Crossrefs

J_3: A114327; J_1^2, J_2^2: A141387, A268759.
Cf. A000292 (row sums), A000332 (triangle sums).
T(n,k) for values of k:
A005843 (k=2), A008585 (k=3), A008586 (k=4), A008587 (k=5), A008588 (k=6), A008589 (k=7), A008590 (k=8), A008591 (k=9), A008592 (k=10), A008593 (k=11), A008594 (k=12), A008595 (k=13), A008596 (k=14), A008597 (k=15), A008598 (k=16), A008599 (k=17), A008600 (k=18), A008601 (k=19), A008602 (k=20).

Programs

  • Magma
    /* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    {for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017

A076312 a(n) = floor(n/10) + 2*(n mod 10).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 7, 9, 11, 13, 15, 17, 19, 21
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

Delete the last digit from n and add twice this digit to the shortened number. - N. J. A. Sloane, May 25 2019
(n==0 modulo 19) iff (a(n)==0 modulo 19); applied recursively, this property provides a useful test for divisibility by 19.

Examples

			26468 is not a multiple of 19, as 26468 -> 2646+2*8=2662 -> 266+2*2=270 -> 27+2*0=27=19*1+8, therefore the answer is NO.
Is 12882 divisible by 19? 12882 -> 1288+2*2=1292 -> 129+2*2=133 -> 13+2*3=19, therefore the answer is YES.
		

References

  • Erdős, Paul, and János Surányi. Topics in the Theory of Numbers. New York: Springer, 2003. Problem 6, page 3.
  • Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.

Crossrefs

Programs

  • Haskell
    a076312 n =  n' + 2 * m where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [Floor(n/10) + 2*(n mod 10): n in [0..100]]; // Vincenzo Librandi, Mar 05 2020
  • Mathematica
    f[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Most[idn]]+2idn[[-1]]]; Array[ f,80,0] (* Harvey P. Dale, Mar 01 2020 *)

Formula

G.f.: -x(17x^9-2-2x-2x^2-2x^3-2x^4-2x^5-2x^6-2x^7-2x^8)/((1-x)^2(1+x)(x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)). a(n)=A059995(n)+2*A010879(n). [R. J. Mathar, Jan 24 2009]

A139620 a(n) = 190*n + 20.

Original entry on oeis.org

20, 210, 400, 590, 780, 970, 1160, 1350, 1540, 1730, 1920, 2110, 2300, 2490, 2680, 2870, 3060, 3250, 3440, 3630, 3820, 4010, 4200, 4390, 4580, 4770, 4960, 5150, 5340, 5530, 5720, 5910, 6100, 6290, 6480, 6670, 6860, 7050, 7240, 7430
Offset: 0

Views

Author

Omar E. Pol, May 21 2008

Keywords

Comments

Numbers of the 20th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 20th column in the square array A057145.

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 10*(2+17*x)/(x-1)^2.
E.g.f.: 10*exp(x)*(2 + 19*x).
a(n) = 10*(A008601(n) + 2).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A244631 a(n) = 19*n^2.

Original entry on oeis.org

0, 19, 76, 171, 304, 475, 684, 931, 1216, 1539, 1900, 2299, 2736, 3211, 3724, 4275, 4864, 5491, 6156, 6859, 7600, 8379, 9196, 10051, 10944, 11875, 12844, 13851, 14896, 15979, 17100, 18259, 19456, 20691, 21964, 23275, 24624, 26011, 27436, 28899, 30400, 31939, 33516
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

First bisection of A195048. - Bruno Berselli, Jul 03 2014

Crossrefs

Cf. similar sequences listed in A244630.

Programs

  • Magma
    [19*n^2: n in [0..40]];
    
  • Mathematica
    Table[19 n^2, {n, 0, 40}]
  • PARI
    a(n)=19*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 19*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 19*A000290(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 19*x*(1 + x)*exp(x).
a(n) = n*A008601(n) = A195048(2*n). (End)

A317319 Multiples of 19 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 19, 3, 38, 5, 57, 7, 76, 9, 95, 11, 114, 13, 133, 15, 152, 17, 171, 19, 190, 21, 209, 23, 228, 25, 247, 27, 266, 29, 285, 31, 304, 33, 323, 35, 342, 37, 361, 39, 380, 41, 399, 43, 418, 45, 437, 47, 456, 49, 475, 51, 494, 53, 513, 55, 532, 57, 551, 59, 570, 61, 589, 63, 608, 65, 627, 67, 646, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 23-gonal numbers (A303303).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 23-gonal numbers.

Crossrefs

Cf. A008601 and A005408 interleaved.
Column 19 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303303.

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, 19*n/2]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 19*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 19*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 19*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 19*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 17/2^s). - Amiram Eldar, Oct 26 2023

A309131 Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.

Original entry on oeis.org

2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2019

Keywords

Comments

T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n).
The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1).
The k-th column of the triangle T gives the multiples of prime(1 + k).
Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - Michel Marcus, Jul 15 2019

Examples

			The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k|    0     1     2     3     4     5     6     7     8
---+-----------------------------------------------------
1  |    2
2  |    4     3
3  |    6     6     5
4  |    8     9    10     7
5  |   10    12    15    14    11
6  |   12    15    20    21    22    13
7  |   14    18    25    28    33    26    17
8  |   16    21    30    35    44    39    34    19
9  |   18    24    35    42    55    52    51    38    23
...
For n = 3 the matrix M(3) is
          2,         3,         5
    M_{2,1},         2,         3
    M_{3,1},   M_{3,2},         2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
		

Crossrefs

Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal.

Programs

  • Magma
    [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
    
  • Maple
    a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]]
  • PARI
    T(n, k) = (n - k)*prime(1 + k);
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
    
  • Sage
    [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output

Formula

T(n, k) = A025581(n, k)*A000040(1 + k).

A121669 Numbers with sum of digits = 19, divisible by 19 and containing the string "19".

Original entry on oeis.org

17119, 19171, 19342, 19513, 20197, 21907, 33193, 34219, 41914, 51319, 61921, 101935, 102619, 112195, 119035, 119206, 121942, 125191, 171019, 171190, 190171, 190342, 190513, 191026, 191710, 192052, 192223, 193420, 194104, 195130, 195301, 197011, 201970, 204193
Offset: 1

Views

Author

Hassan Taifour (hytaifour(AT)yahoo.co.uk), Sep 10 2006

Keywords

Comments

Conjecture: There are approximately k(n-1)(n-2)^(n-2) terms of this sequence up to 10^n, where k is about e/(19e-19). - Charles R Greathouse IV, Oct 13 2022

Crossrefs

Intersection of A008601, A166459 and A293879.

Programs

  • Mathematica
    d19Q[n_]:=Module[{idn=IntegerDigits[n]},Total[idn]==19&&MemberQ[ Partition[ idn,2,1],{1,9}]]; Select[19*Range[20000],d19Q] (* Harvey P. Dale, Jun 10 2014 *)
  • Python
    def ok(n): s = str(n); return n%19==0 and '19' in s and sum(map(int, s))==19
    print(list(filter(ok, range(205000)))) # Michael S. Branicky, Aug 06 2021

Extensions

More terms from Zak Seidov, Sep 12 2006
Showing 1-10 of 15 results. Next