A008604
Multiples of 22.
Original entry on oeis.org
0, 22, 44, 66, 88, 110, 132, 154, 176, 198, 220, 242, 264, 286, 308, 330, 352, 374, 396, 418, 440, 462, 484, 506, 528, 550, 572, 594, 616, 638, 660, 682, 704, 726, 748, 770, 792, 814, 836, 858, 880, 902, 924, 946, 968, 990, 1012, 1034, 1056, 1078, 1100, 1122, 1144
Offset: 0
-
Range[0, 1500, 22] (* Vladimir Joseph Stephan Orlovsky, Jun 01 2011 *)
CoefficientList[Series[22 x / (x - 1)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jun 10 2013 *)
LinearRecurrence[{2,-1},{0,22},50] (* Harvey P. Dale, Aug 06 2018 *)
-
a(n)=22*n \\ Charles R Greathouse IV, Oct 07 2015
A119457
Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1
Triangle begins as:
1;
2, 2;
3, 4, 3;
4, 6, 6, 5;
5, 8, 9, 10, 8;
6, 10, 12, 15, 16, 13;
7, 12, 15, 20, 24, 26, 21;
8, 14, 18, 25, 32, 39, 42, 34;
9, 16, 21, 30, 40, 52, 63, 68, 55;
10, 18, 24, 35, 48, 65, 84, 102, 110, 89;
11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
-
A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
[A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
-
(* First program *)
T[n_, 1] := n;
T[n_ /; n > 1, 2] := 2 n - 2;
T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
(* Second program *)
A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
-
def A119457(n,k): return (n-k+1)*fibonacci(k+1)
print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025
A008605
Multiples of 23.
Original entry on oeis.org
0, 23, 46, 69, 92, 115, 138, 161, 184, 207, 230, 253, 276, 299, 322, 345, 368, 391, 414, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 690, 713, 736, 759, 782, 805, 828, 851, 874, 897, 920, 943, 966, 989, 1012, 1035, 1058, 1081, 1104, 1127, 1150
Offset: 0
A064762
a(n) = 21*n^2.
Original entry on oeis.org
0, 21, 84, 189, 336, 525, 756, 1029, 1344, 1701, 2100, 2541, 3024, 3549, 4116, 4725, 5376, 6069, 6804, 7581, 8400, 9261, 10164, 11109, 12096, 13125, 14196, 15309, 16464, 17661, 18900, 20181, 21504, 22869, 24276, 25725, 27216, 28749
Offset: 0
Similar sequences are listed in
A244630.
-
[21*n^2 : n in [0..50]]; // Wesley Ivan Hurt, Jul 04 2014
-
21 Range[0, 50]^2 (* Wesley Ivan Hurt, Jul 04 2014 *)
LinearRecurrence[{3,-3,1},{0,21,84},40] (* Harvey P. Dale, Jul 29 2019 *)
-
a(n)=21*n^2 \\ Charles R Greathouse IV, Jun 17 2017
A317321
Multiples of 21 and odd numbers interleaved.
Original entry on oeis.org
0, 1, 21, 3, 42, 5, 63, 7, 84, 9, 105, 11, 126, 13, 147, 15, 168, 17, 189, 19, 210, 21, 231, 23, 252, 25, 273, 27, 294, 29, 315, 31, 336, 33, 357, 35, 378, 37, 399, 39, 420, 41, 441, 43, 462, 45, 483, 47, 504, 49, 525, 51, 546, 53, 567, 55, 588, 57, 609, 59, 630, 61, 651, 63, 672, 65, 693, 67, 714, 69
Offset: 0
-
a[n_] := If[OddQ[n], n, 21*n/2]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
-
concat(0, Vec(x*(1 + 21*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018
A139607
a(n) = 21*n + 7.
Original entry on oeis.org
7, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 238, 259, 280, 301, 322, 343, 364, 385, 406, 427, 448, 469, 490, 511, 532, 553, 574, 595, 616, 637, 658, 679, 700, 721, 742, 763, 784, 805, 826, 847, 868, 889, 910, 931, 952, 973, 994
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012
-
[21*n+7: n in [0..60]]; // Vincenzo Librandi, Jul 23 2011
-
Range[7, 1500, 21] (* Vladimir Joseph Stephan Orlovsky, Jun 01 2011 *)
21*Range[0,50]+7 (* or *) LinearRecurrence[{2,-1},{7,28},50] (* Harvey P. Dale, Feb 23 2020 *)
-
a(n)=21*n+7 \\ Charles R Greathouse IV, Oct 05 2011
A169825
Multiples of 420.
Original entry on oeis.org
0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0
A169827
Multiples of 840.
Original entry on oeis.org
0, 840, 1680, 2520, 3360, 4200, 5040, 5880, 6720, 7560, 8400, 9240, 10080, 10920, 11760, 12600, 13440, 14280, 15120, 15960, 16800, 17640, 18480, 19320, 20160, 21000, 21840, 22680, 23520, 24360, 25200, 26040, 26880, 27720, 28560, 29400, 30240, 31080, 31920
Offset: 0
A260042
Numbers k such that (4^k-1)/3 is not squarefree.
Original entry on oeis.org
9, 10, 18, 20, 21, 27, 30, 36, 40, 42, 45, 50, 54, 55, 60, 63, 68, 70, 72, 78, 80, 81, 84, 90, 99, 100, 105, 108, 110, 117, 120, 126, 130, 135, 136, 140, 144, 147, 150, 153, 155, 156, 160, 162, 165, 168, 170, 171, 180, 182, 189, 190, 198, 200, 204, 207, 210
Offset: 1
(4^9-1)/3 = 3^2*7*19*73 is not squarefree, so 9 is in the sequence. - _R. J. Mathar_, Aug 02 2015
- James R. Buddenhagen, Posting to Math Fun Mailing List, Jul 22 2015.
-
[n: n in [1..120]| not IsSquarefree((4^n-1) div 3)]; // Vincenzo Librandi, Jul 27 2015
-
Select[Range[120],!SquareFreeQ[(4^#-1)/3]&] (* Ivan N. Ianakiev, Jul 23 2015 *)
-
isok(k) = !issquarefree((4^k-1)/3); \\ Michel Marcus, Feb 25 2021
A069499
Triangular numbers of the form 21*k.
Original entry on oeis.org
0, 21, 105, 210, 231, 378, 630, 861, 903, 1176, 1596, 1953, 2016, 2415, 3003, 3486, 3570, 4095, 4851, 5460, 5565, 6216, 7140, 7875, 8001, 8778, 9870, 10731, 10878, 11781, 13041, 14028, 14196, 15225, 16653, 17766, 17955, 19110, 20706, 21945, 22155, 23436, 25200
Offset: 1
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
-
a[0] := 0:a[1] := 6:a[2] := 14:a[3] := 20:a[4] := 21:a[5] := 27:a[6] := 35:a[7] := 41:seq((42*(floor(i/8))+a[i mod 8])*(42*(floor(i/8))+a[i mod 8]+1)/2,i=0..100);
# alternative program
A := proc (q) local n: for n from 0 to q do if type((1/21)*n*(n+1)/2, integer) then print(n*(n+1)/2) fi; od; end: A(250); # Peter Bala, Dec 24 2024
-
Select[21Range[1100],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Aug 16 2021 *)
Select[Accumulate[Range[0,300]],IntegerQ[#/21]&] (* Harvey P. Dale, Jun 12 2022 *)
Showing 1-10 of 12 results.
Comments