cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A008604 Multiples of 22.

Original entry on oeis.org

0, 22, 44, 66, 88, 110, 132, 154, 176, 198, 220, 242, 264, 286, 308, 330, 352, 374, 396, 418, 440, 462, 484, 506, 528, 550, 572, 594, 616, 638, 660, 682, 704, 726, 748, 770, 792, 814, 836, 858, 880, 902, 924, 946, 968, 990, 1012, 1034, 1056, 1078, 1100, 1122, 1144
Offset: 0

Views

Author

Keywords

Comments

Even numbers for which the sum of "digits" base 100 is divisible by 11. - Daniel Forgues, Feb 22 2016

Crossrefs

Programs

Formula

G.f.: 22*x/(x-1)^2. - Vincenzo Librandi, Jun 10 2013
a(n) = A008593(2n). - Daniel Forgues, Feb 22 2016
From Wesley Ivan Hurt, May 19 2024: (Start)
a(n) = 22*n.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: 22*x*exp(x). - Stefano Spezia, Mar 02 2025

A119457 Triangle read by rows: T(n, 1) = n, T(n, 2) = 2*(n-1) for n>1 and T(n, k) = T(n-1, k-1) + T(n-2, k-2) for 2 < k <= n.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233
Offset: 1

Views

Author

Reinhard Zumkeller, May 20 2006

Keywords

Examples

			Triangle begins as:
   1;
   2,  2;
   3,  4,  3;
   4,  6,  6,  5;
   5,  8,  9, 10,  8;
   6, 10, 12, 15, 16, 13;
   7, 12, 15, 20, 24, 26,  21;
   8, 14, 18, 25, 32, 39,  42,  34;
   9, 16, 21, 30, 40, 52,  63,  68,  55;
  10, 18, 24, 35, 48, 65,  84, 102, 110,  89;
  11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144;
  12, 22, 30, 45, 64, 91, 126, 170, 220, 267, 288, 233;
		

Crossrefs

Main diagonal: A023607(n).
Sums: A001891 (row), A355020 (signed row).
Columns: A000027(n) (k=1), A005843(n-1) (k=2), A008585(n-2) (k=3), A008587(n-3) (k=4), A008590(n-4) (k=5), A008595(n-5) (k=6), A008603(n-6) (k=7).
Diagonals: A000045(n+1) (k=n), A006355(n+1) (k=n-1), A022086(n-1) (k=n-2), A022087(n-2) (k=n-3), A022088(n-3) (k=n-4), A022089(n-4) (k=n-5), A022090(n-5) (k=n-6).

Programs

  • Magma
    A119457:= func< n,k | (n-k+1)*Fibonacci(k+1) >;
    [A119457(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 16 2025
    
  • Mathematica
    (* First program *)
    T[n_, 1] := n;
    T[n_ /; n > 1, 2] := 2 n - 2;
    T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
    (* Second program *)
    A119457[n_,k_]:= (n-k+1)*Fibonacci[k+1];
    Table[A119457[n,k], {n,13}, {k,n}]//Flatten (* G. C. Greubel, Apr 16 2025 *)
  • SageMath
    def A119457(n,k): return (n-k+1)*fibonacci(k+1)
    print(flatten([[A119457(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Apr 16 2025

Formula

T(n, k) = (n-k+1)*T(k,k) for 1 <= k < n, with T(n, n) = A000045(n+1).
From G. C. Greubel, Apr 15 2025: (Start)
T(n, k) = (n-k+1)*Fibonacci(k+1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n)*A023652(floor((n+1)/2)) + (1+(-1)^n)*A001891(floor(n/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n)*A112469(floor((n-1)/2)) + (1+(-1)^n)*A355020(floor((n-2)/2)). (End)

A008605 Multiples of 23.

Original entry on oeis.org

0, 23, 46, 69, 92, 115, 138, 161, 184, 207, 230, 253, 276, 299, 322, 345, 368, 391, 414, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 690, 713, 736, 759, 782, 805, 828, 851, 874, 897, 920, 943, 966, 989, 1012, 1035, 1058, 1081, 1104, 1127, 1150
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: 23*x/(x-1)^2. - Vincenzo Librandi, Jun 10 2013
E.g.f.: 23*x*exp(x). - Stefano Spezia, Mar 02 2025
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 23*n = (A008604(n) + A008606(n))/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A064762 a(n) = 21*n^2.

Original entry on oeis.org

0, 21, 84, 189, 336, 525, 756, 1029, 1344, 1701, 2100, 2541, 3024, 3549, 4116, 4725, 5376, 6069, 6804, 7581, 8400, 9261, 10164, 11109, 12096, 13125, 14196, 15309, 16464, 17661, 18900, 20181, 21504, 22869, 24276, 25725, 27216, 28749
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 7-partite graph of order 7n, K_n,n,n,n,n,n,n.

Crossrefs

Similar sequences are listed in A244630.

Programs

Formula

a(n) = 42*n + a(n-1) - 21 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = 21*A000290(n) = 7*A033428(n) = 3*A033582(n). - Omar E. Pol, Jul 03 2014
a(n) = t(7*n) - 7*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(7*n) - 7*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 21*x*(1 + x)/(1-x)^3.
E.g.f.: 21*x*(1 + x)*exp(x).
a(n) = n*A008603(n) = A195049(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A317321 Multiples of 21 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 21, 3, 42, 5, 63, 7, 84, 9, 105, 11, 126, 13, 147, 15, 168, 17, 189, 19, 210, 21, 231, 23, 252, 25, 273, 27, 294, 29, 315, 31, 336, 33, 357, 35, 378, 37, 399, 39, 420, 41, 441, 43, 462, 45, 483, 47, 504, 49, 525, 51, 546, 53, 567, 55, 588, 57, 609, 59, 630, 61, 651, 63, 672, 65, 693, 67, 714, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 25-gonal numbers (A303304).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 25-gonal numbers.

Crossrefs

Cf. A008603 and A005408 interleaved.
Column 21 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303304.

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, 21*n/2]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 21*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 21*n, a(2n+1) = 2*n + 1.
Multiplicative with a(2^e) = 21*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 19/2^s). - Amiram Eldar, Oct 26 2023

A139607 a(n) = 21*n + 7.

Original entry on oeis.org

7, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 238, 259, 280, 301, 322, 343, 364, 385, 406, 427, 448, 469, 490, 511, 532, 553, 574, 595, 616, 637, 658, 679, 700, 721, 742, 763, 784, 805, 826, 847, 868, 889, 910, 931, 952, 973, 994
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 7th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.
7th transversal numbers (or 7-transversal numbers): (A000217(7)-7)*n + 7.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = A057145(n+2,7).
G.f.: 7*(1+2*x)/(x-1)^2. - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 12 2024: (Start)
E.g.f.: 7*exp(x)*(1 + 3*x).
a(n) = 7*A016777(n) = A008603(n) + 7 = A152744(n+1) - A152744(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A169825 Multiples of 420.

Original entry on oeis.org

0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7.

Crossrefs

Programs

Formula

a(n) = 420*n. - Wesley Ivan Hurt, Apr 11 2021
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 420*x/(x-1)^2.
E.g.f.: 420*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A169823(n) = 14*A249674(n) = 15*A135628(n) = 20*A008603(n) = 21*A008602(n) = 28*A008597(n) = 30*A008596(n) = 60*A008589(n) = 420*A001477(n) = A169827(n)/2. (End)

A169827 Multiples of 840.

Original entry on oeis.org

0, 840, 1680, 2520, 3360, 4200, 5040, 5880, 6720, 7560, 8400, 9240, 10080, 10920, 11760, 12600, 13440, 14280, 15120, 15960, 16800, 17640, 18480, 19320, 20160, 21000, 21840, 22680, 23520, 24360, 25200, 26040, 26880, 27720, 28560, 29400, 30240, 31080, 31920
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7,8.

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 840*x/(x-1)^2.
E.g.f.: 840*x*exp(x).
a(n) = 840*n = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A169825(n) = 14*A169823(n) = 21*A317095(n) = 28*A249674(n) = 30*A135628(n) = 40*A008603(n) = 60*A008596(n) = 420*A005843(n) = 840*A001477(n). (End)

A260042 Numbers k such that (4^k-1)/3 is not squarefree.

Original entry on oeis.org

9, 10, 18, 20, 21, 27, 30, 36, 40, 42, 45, 50, 54, 55, 60, 63, 68, 70, 72, 78, 80, 81, 84, 90, 99, 100, 105, 108, 110, 117, 120, 126, 130, 135, 136, 140, 144, 147, 150, 153, 155, 156, 160, 162, 165, 168, 170, 171, 180, 182, 189, 190, 198, 200, 204, 207, 210
Offset: 1

Views

Author

N. J. A. Sloane, Jul 22 2015

Keywords

Comments

Contains all positive multiples of 9 (A008591), because 4^n-1 == 0 (mod 27) for these and (4^n-1)/3 is a multiple of 3^2 then. Contains also all positive multiples of 10 (A008592), because 4^n-1 == 0 (mod 125) for these and (4^n-1)/3 is a multiple of 5^2 then. Contains all positive multiples of 21 (A008603), because 4^n-1 == 0 (mod 147) for these and (4^n-1)/3 is a multiple of 7^2 then. - R. J. Mathar, Aug 02 2015
Complement of A259178. - Omar E. Pol, Aug 03 2015

Examples

			(4^9-1)/3 = 3^2*7*19*73 is not squarefree, so 9 is in the sequence. - _R. J. Mathar_, Aug 02 2015
		

References

  • James R. Buddenhagen, Posting to Math Fun Mailing List, Jul 22 2015.

Crossrefs

Programs

  • Magma
    [n: n in [1..120]| not IsSquarefree((4^n-1) div 3)]; // Vincenzo Librandi, Jul 27 2015
    
  • Mathematica
    Select[Range[120],!SquareFreeQ[(4^#-1)/3]&] (* Ivan N. Ianakiev, Jul 23 2015 *)
  • PARI
    isok(k) = !issquarefree((4^k-1)/3); \\ Michel Marcus, Feb 25 2021

Extensions

a(24)-a(31) from Ivan N. Ianakiev, Jul 23 2015
a(32)-a(45) from Chai Wah Wu, Jul 26 2015
a(46)-a(57) from Lars Blomberg, Aug 06 2017

A069499 Triangular numbers of the form 21*k.

Original entry on oeis.org

0, 21, 105, 210, 231, 378, 630, 861, 903, 1176, 1596, 1953, 2016, 2415, 3003, 3486, 3570, 4095, 4851, 5460, 5565, 6216, 7140, 7875, 8001, 8778, 9870, 10731, 10878, 11781, 13041, 14028, 14196, 15225, 16653, 17766, 17955, 19110, 20706, 21945, 22155, 23436, 25200
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

Intersection of A000217 and A008603. - Michel Marcus, Sep 17 2013
Let F(r) = Product_{n >= 0} 1 - q^(21*(14*n+r)). The sequence terms occur as the exponents in the expansion of (1 - q^21)*F(5)*F(6)*F(7)*F(8)*F(9)*F(13)*F(14)*F(15) = 1 - q^21 - q^105 + q^210 + q^231 - q^378 - q^630 + + - - ... (by the quintuple product identity). - Peter Bala, Dec 23 2024

Crossrefs

Programs

  • Maple
    a[0] := 0:a[1] := 6:a[2] := 14:a[3] := 20:a[4] := 21:a[5] := 27:a[6] := 35:a[7] := 41:seq((42*(floor(i/8))+a[i mod 8])*(42*(floor(i/8))+a[i mod 8]+1)/2,i=0..100);
    # alternative program
    A := proc (q) local n: for n from 0 to q do if type((1/21)*n*(n+1)/2, integer) then print(n*(n+1)/2) fi; od; end: A(250); # Peter Bala, Dec 24 2024
  • Mathematica
    Select[21Range[1100],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Aug 16 2021 *)
    Select[Accumulate[Range[0,300]],IntegerQ[#/21]&] (* Harvey P. Dale, Jun 12 2022 *)

Formula

G.f.: -21*x^2*(x^2-x+1)*(x^4+5*x^3+9*x^2+5*x+1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 23 2013
From Peter Bala, Dec 24 2025: (Start)
a(n) is quasi-polynomial in n:
a(4*n) = 21 * n*(21*n - 1)/2; a(4*n+1) = 21 * n*(21*n + 1)/2;
a(4*n+2) = 21 * (3*n + 1)*(7*n + 2)/2; a(4*n+3) = 21 * (3*n + 2)*(7*n + 5)/2. (End)

Extensions

More terms from Sascha Kurz, Apr 01 2002
a(1)=0 added and edited by Alois P. Heinz, Aug 19 2021
Showing 1-10 of 12 results. Next