cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A248237 Egyptian fraction representation of sqrt(7) (A010465) using a greedy function.

Original entry on oeis.org

2, 2, 7, 346, 250326, 159992246122, 43126926376468440463866, 2067900185855597116733968004943580535040713497, 14833490144163739987168640921306687956266487136609932761918465200939453258507455567518894133
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 7]]

A010121 Continued fraction for sqrt(7).

Original entry on oeis.org

2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4
Offset: 0

Views

Author

Keywords

Comments

This is a basic member of a family of 4-periodic multiplicative sequences with two parameters (c1,c2), defined for n >= 1 by a(n)=1 if n is odd, a(n)=c1 if n == 0 (mod 4) and a(n)=c2 if n == 2 (mod 4). Here, (c1,c2)=(4,1).
The Dirichlet generating function is (1+(c2-1)/2^s+(c1-c2)/4^s)*zeta(s).
Other members are A010123 with parameters (6,2), A010127 (8,3), A010130 (10,1), A010131 (10,2), A010132 (10,4), A010137 (12,5), A010146 (14,6), A089146 (4,8), A109008 (4,2), A112132 (7,3). If c1=c2, this reduces to the cases discussed in A040001. - R. J. Mathar, Feb 18 2011

Examples

			2.645751311064590590501615753...  = A010465 = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...)))).
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010465 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[7],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    CoefficientList[Series[(2 x^2 + 3 x + 2) (x^2 - x + 1) / ((1 - x) (1 + x) (x^2 + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 26 2016 *)
    PadRight[{2},120,{4,1,1,1}] (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 13000); x=contfrac(sqrt(7)); for (n=0, 20000, write("b010121.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

From R. J. Mathar, Jun 17 2009: (Start)
G.f.: -(2*x^2+3*x+2)*(x^2-x+1)/((x-1)*(1+x)*(x^2+1)).
a(n) = a(n-4), n > 4. (End)
a(n) = (7 + 3*(-1)^n + 3*(-i)^n + 3*i^n)/4, n > 0, where i is the imaginary unit. - Bruno Berselli, Feb 18 2011

A041008 Numerators of continued fraction convergents to sqrt(7).

Original entry on oeis.org

2, 3, 5, 8, 37, 45, 82, 127, 590, 717, 1307, 2024, 9403, 11427, 20830, 32257, 149858, 182115, 331973, 514088, 2388325, 2902413, 5290738, 8193151, 38063342, 46256493, 84319835, 130576328, 606625147, 737201475, 1343826622, 2081028097, 9667939010, 11748967107, 21416906117
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010465, A041009 (denominators), A266698 (quadrisection), A001081 (quadrisection).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041010 (m=8), A005667 (m=10), A041014 (m=11), A041016 (m=12), ..., A042934 (m=999), A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[7], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    LinearRecurrence[{0,0,0,16,0,0,0,-1},{2,3,5,8,37,45,82,127},40] (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    A041008=contfracpnqn(c=contfrac(sqrt(7)),#c)[1,][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A041008[n+1]! For more terms use:
    A041008(n)={n<#A041008|| A041008=extend(A041008, [4, 16; 8, -1], n\.8); A041008[n+1]}
    extend(A,c,N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[,1]]*c[,2]); A} \\ (End)

Formula

G.f.: (2 + 3*x + 5*x^2 + 8*x^3 + 5*x^4 - 3*x^5 + 2*x^6 - x^7)/(1 - 16*x^4 + x^8).

A154244 a(n) = 6*a(n-1) - 2*a(n-2) for n>1; a(1)=1, a(2)=6.

Original entry on oeis.org

1, 6, 34, 192, 1084, 6120, 34552, 195072, 1101328, 6217824, 35104288, 198190080, 1118931904, 6317211264, 35665403776, 201358000128, 1136817193216, 6418187159040, 36235488567808, 204576557088768, 1154988365396992
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

Keywords

Comments

Binomial transform of A126473.
lim_{n -> infinity} a(n)/a(n-1) = 3+sqrt(7) = 5.6457513110....
a(n) equals the number of words of length n-1 over {0,1,2,3,4,5} avoiding 01 and 02. - Milan Janjic, Dec 17 2015

Crossrefs

Equals 1 followed by 2*A010913 (Pisot sequence E(3,17)).
Cf. A010465 (decimal expansion of square root of 7), A126473.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-7); S:=[ ((3+r)^n-(3-r)^n)/(2*r): n in [1..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
    
  • Magma
    I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 02 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,5}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{6, -2}, {1, 6}, 40] (* Vincenzo Librandi, Feb 02 2012 *)
  • Maxima
    a[1]:1$ a[2]:6$ a[n]:=6*a[n-1]-2*a[n-2]$ makelist(a[n], n, 1, 21); /* Bruno Berselli, May 30 2011 */
    
  • PARI
    Vec(1/(1-6*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 28 2011
  • Sage
    [lucas_number1(n,6,2) for n in range(1, 22)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = ((3 + sqrt(7))^n - (3 - sqrt(7))^n)/(2*sqrt(7)).
G.f.: x/(1-6*x+2*x^2). - Philippe Deléham, Jan 06 2009

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
Name (corrected) from Philippe Deléham, Jan 06 2009

A233587 Coefficients of the generalized continued fraction expansion sqrt(7) = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

Original entry on oeis.org

2, 3, 30, 34, 111, 235, 3775, 5052, 7352, 9091, 34991, 35530, 53424, 57290, 66023, 1409179, 1519111, 1725990, 1812396, 4370835, 4507156, 4655396, 44257080, 234755198, 261519946, 264374278, 273487975
Offset: 1

Views

Author

Stanislav Sykora, Jan 06 2014

Keywords

Comments

For more details on Blazys' expansions, see A233582.
Sqrt(7) is the first square root of a natural number with an a-periodic Blazys' expansion (see A233592 and A233593).

Crossrefs

Cf. Blazys' expansions: A233582 (Pi), A233583 (e), A233584 (sqrt(e)), A233585 (1/gamma), A233585 (2*gamma) and Blazys' continued fractions: A233588, A233589, A233590, A233591.

Programs

  • Mathematica
    BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Sqrt@7, 32] (* Robert G. Wilson v, May 22 2014 *)
  • PARI
    bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
    v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
    bx(sqrt(7), 1000) \\ Execution; use very high real precision

Formula

sqrt(7) = 2+2/(3+3/(30+30/(34+34/(111+...)))).

A114765 a(n) = floor(sqrt(7) * 10^n)^2.

Original entry on oeis.org

4, 676, 69696, 6996025, 699972849, 69999930625, 6999998354001, 699999994145169, 69999999943667161, 6999999999658218721, 699999999965821872100, 69999999999757088783236, 6999999999996874888812096, 699999999999952064012316025, 69999999999999968753591518681
Offset: 0

Views

Author

Amarnath Murthy, Nov 17 2005

Keywords

Comments

Largest square less than 7 * 10^(2n).

Examples

			sqrt(7) = 2.645751311...
floor(sqrt(7) * 10) = 26 and 26^2 = 676, so a(1) = 676.
floor(sqrt(7) * 100) = 264 and 264^2 = 69696, so a(2) = 69696.
floor(sqrt(7) * 1000) = 2645 and 2645^2 = 6996025, so a(3) = 6996025.
		

Crossrefs

Cf. A010465 (sqrt(7)).

Programs

  • Magma
    [Floor(7^(1/2)*10^n)^2: n in [0..150]]; // Vincenzo Librandi, Feb 05 2011
    
  • Mathematica
    $MaxExtraPrecision := 200; Table[Floor[7^(1/2) * 10^n]^2, {n, 0, 20}] (* Stefan Steinerberger, Jan 26 2006 *)
  • PARI
    a(n)={sqrtint(7*10^(2*n))^2} \\ Andrew Howroyd, Nov 09 2019

Extensions

More terms from Stefan Steinerberger, Jan 26 2006
Terms a(12) and beyond from Andrew Howroyd, Nov 09 2019

A041009 Denominators of continued fraction convergents to sqrt(7).

Original entry on oeis.org

1, 1, 2, 3, 14, 17, 31, 48, 223, 271, 494, 765, 3554, 4319, 7873, 12192, 56641, 68833, 125474, 194307, 902702, 1097009, 1999711, 3096720, 14386591, 17483311, 31869902, 49353213, 229282754, 278635967
Offset: 0

Views

Author

Keywords

Comments

Sqrt(7) = 2 + 9/14 + 9/(14*223) + 9/(223*3554) + 9/(3554*56641) + ...; sum of these 5 terms = 2.64575131088, with sqrt(7) = 2.64575131106... The terms 14, 223, 3554, ... = a(4), a(8), a(12), ... - Gary W. Adamson, Dec 27 2007

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
    Denominator[Convergents[Sqrt[7],30]] (* or *) LinearRecurrence[ {0,0,0,16,0,0,0,-1},{1,1,2,3,14,17,31,48},30] (* Harvey P. Dale, Dec 17 2019 *)

Formula

G.f.: (1+x+2*x^2+3*x^3-2*x^4+x^5-x^6)/(1-16*x^4+x^8). - Colin Barker, Mar 13 2012

A010483 Decimal expansion of square root of 28.

Original entry on oeis.org

5, 2, 9, 1, 5, 0, 2, 6, 2, 2, 1, 2, 9, 1, 8, 1, 1, 8, 1, 0, 0, 3, 2, 3, 1, 5, 0, 7, 2, 7, 8, 5, 2, 0, 8, 5, 1, 4, 2, 0, 5, 1, 8, 3, 6, 6, 1, 6, 4, 9, 0, 0, 3, 6, 0, 7, 3, 6, 6, 6, 8, 9, 1, 8, 4, 0, 2, 1, 3, 7, 6, 4, 6, 4, 6, 0, 5, 6, 7, 2, 5, 5, 5, 2, 0, 7, 8, 5, 7, 7, 2, 9, 4, 9, 0, 8, 7, 2, 2
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 5 followed by {3, 2, 3, 10} repeated. - Harry J. Smith, Jun 04 2009

Examples

			5.2915026221291811810032315072785208514205183661649003607366689184... - _Harry J. Smith_, Jun 04 2009
		

Crossrefs

Cf. A040022 Continued fraction. - Harry J. Smith, Jun 04 2009

Programs

  • Mathematica
    RealDigits[N[Sqrt[28], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 22 2011 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(28); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010483.txt", n, " ", d)); } \\ Harry J. Smith, Jun 04 2009

Formula

Equals 2*A010465. - R. J. Mathar, Jan 14 2021

A020764 Decimal expansion of 1/sqrt(7).

Original entry on oeis.org

3, 7, 7, 9, 6, 4, 4, 7, 3, 0, 0, 9, 2, 2, 7, 2, 2, 7, 2, 1, 4, 5, 1, 6, 5, 3, 6, 2, 3, 4, 1, 8, 0, 0, 6, 0, 8, 1, 5, 7, 5, 1, 3, 1, 1, 8, 6, 8, 9, 2, 1, 4, 5, 4, 3, 3, 8, 3, 3, 3, 4, 9, 4, 1, 7, 1, 5, 8, 1, 2, 6, 0, 4, 6, 1, 4, 6, 9, 0, 8, 9, 6, 8, 0, 0, 5, 6, 1, 2, 6, 6, 3, 9, 2, 2, 0, 5, 1, 5
Offset: 0

Views

Author

Keywords

Comments

1/sqrt(7) = 0.377964473009227227214516536234180060815751311868921454338333494171... - Vladimir Joseph Stephan Orlovsky, May 27 2010

Crossrefs

Cf. A010465.

Programs

Formula

Equals 1/A010465.

A004575 Expansion of sqrt(7) in base 8.

Original entry on oeis.org

2, 5, 1, 2, 4, 7, 7, 6, 5, 1, 6, 4, 5, 7, 4, 3, 5, 1, 5, 5, 7, 0, 7, 1, 6, 5, 1, 7, 6, 3, 0, 3, 7, 6, 0, 6, 7, 5, 0, 4, 0, 6, 5, 2, 4, 5, 1, 6, 7, 7, 7, 4, 7, 5, 5, 7, 0, 2, 0, 2, 5, 6, 7, 7, 4, 4, 3, 4, 3, 2, 2, 4, 6, 7, 7, 5, 0, 7, 0, 5, 5, 7, 6, 2, 2, 5, 1, 1, 6, 2, 6, 6, 4, 0, 2, 1, 4, 4, 7, 1, 1, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010465.

Programs

  • Magma
    Prune(Reverse(IntegerToSequence(Isqrt(7*8^204),8))); // Jason Kimberley, Feb 19 2012
  • Mathematica
    RealDigits[Sqrt[7],8,120][[1]] (* Harvey P. Dale, Jan 04 2018 *)

Extensions

More terms from Jason Kimberley, Feb 27 2012
Showing 1-10 of 45 results. Next