cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A248252 Egyptian fraction representation of sqrt(24) (A010480) using a greedy function.

Original entry on oeis.org

4, 2, 3, 16, 318, 667493, 520599832812, 1406502882894868771562029, 5482100301108869539661068478608291549480253128390, 195012261486920753888173091467257385308263858947121366558714224718185929485569758493733677353323155
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 24]]

A090654 Decimal expansion of 4 + 2*sqrt(6).

Original entry on oeis.org

8, 8, 9, 8, 9, 7, 9, 4, 8, 5, 5, 6, 6, 3, 5, 6, 1, 9, 6, 3, 9, 4, 5, 6, 8, 1, 4, 9, 4, 1, 1, 7, 8, 2, 7, 8, 3, 9, 3, 1, 8, 9, 4, 9, 6, 1, 3, 1, 3, 3, 4, 0, 2, 5, 6, 8, 6, 5, 3, 8, 5, 1, 3, 4, 5, 0, 1, 9, 2, 0, 7, 5, 4, 9, 1, 4, 6, 3, 0, 0, 5, 3, 0, 7, 9, 7, 1, 8, 8, 6, 6, 2, 0, 9, 2, 8, 0, 4, 6, 9, 6
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 8. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			8.898979485566356196394568149...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Essentially the same as A010480.

Programs

  • Mathematica
    RealDigits[4 + 2*Sqrt[6], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    4 + 2*sqrt(6) \\ G. C. Greubel, Jul 03 2017

A020781 Decimal expansion of 1/sqrt(24).

Original entry on oeis.org

2, 0, 4, 1, 2, 4, 1, 4, 5, 2, 3, 1, 9, 3, 1, 5, 0, 8, 1, 8, 3, 1, 0, 7, 0, 0, 6, 2, 2, 5, 4, 9, 0, 9, 4, 9, 3, 3, 0, 4, 9, 5, 6, 2, 3, 3, 8, 8, 0, 5, 5, 8, 4, 4, 0, 3, 6, 0, 5, 7, 7, 1, 3, 9, 3, 7, 5, 8, 0, 0, 3, 1, 4, 5, 4, 7, 7, 6, 2, 5, 2, 2, 1, 1, 6, 5, 4, 9, 5, 2, 7, 5, 8, 7, 2, 0, 0, 1, 9
Offset: 0

Views

Author

Keywords

Comments

Radius of the inscribed sphere (tangent to the faces) for a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013

Examples

			1/sqrt(24) = 0.20412414523193150818310700622549094933... . - _Vladimir Joseph Stephan Orlovsky_, May 30 2010
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids inradii: A020763 (octahedron), A179294 (icosahedron), A237603 (dodecahedron). - Stanislav Sykora, Feb 25 2014

Programs

Formula

Equals A010464/12. - Stefano Spezia, Jan 26 2025
Equals 1/A010480 = A020763/2 = 2*A020853 = A187110/3 = A244980/Pi. - Hugo Pfoertner, Jan 26 2025

A041038 Numerators of continued fraction convergents to sqrt(24).

Original entry on oeis.org

4, 5, 44, 49, 436, 485, 4316, 4801, 42724, 47525, 422924, 470449, 4186516, 4656965, 41442236, 46099201, 410235844, 456335045, 4060916204, 4517251249, 40198926196, 44716177445, 397928345756
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(2n) = 2*A041006(2n) ; a(2n-1) = A041006(2n-1) = A001079(n). [From M. F. Hasler, Feb 13 2009]
G.f.: (4+5*x+4*x^2-x^3)/(1-10*x^2+x^4)

A040019 Continued fraction for sqrt(24).

Original entry on oeis.org

4, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 23/55. - R. J. Mathar, Aug 25 2025

Examples

			4.898979485566356196394568149... = 4 + 1/(1 + 1/(8 + 1/(1 + 1/(8 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010480 (decimal expansion), A010689.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[24],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{4},120,{8,1}] (* Harvey P. Dale, Oct 24 2022 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(24)); for (n=0, 20000, write("b040019.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 8, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 7/2^s). (End)
G.f.: (4 + x + 4*x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025

A041039 Denominators of continued fraction convergents to sqrt(24).

Original entry on oeis.org

1, 1, 9, 10, 89, 99, 881, 980, 8721, 9701, 86329, 96030, 854569, 950599, 8459361, 9409960, 83739041, 93149001, 828931049, 922080050, 8205571449, 9127651499, 81226783441, 90354434940, 804062262961
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 8 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[24],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
    Denominator[Convergents[Sqrt[24],30]] (* or *) LinearRecurrence[{0,10,0,-1},{1,1,9,10},30] (* Harvey P. Dale, Apr 12 2022 *)

Formula

G.f.: (1+x-x^2)/(1-10*x^2+x^4). - Colin Barker, Jan 01 2012
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(2) + sqrt(3) and beta = sqrt(2) - sqrt(3) be the roots of the equation x^2 - sqrt(8)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 8 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 8*a(2*n) + a(2*n - 1). (End)

A248672 Decimal expansion of the solution to the Lane-Emden equation for a sphere of polytropic index n = 2.

Original entry on oeis.org

2, 4, 1, 1, 0, 4, 6, 0, 1, 2, 0, 9, 6, 8, 9, 3, 7, 8, 3, 6, 4, 8, 4, 4, 2, 7, 4, 4, 6, 7, 1, 4
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 11 2014

Keywords

Examples

			2.4110460120968937836484427446714...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 2.14, pp. 338-339.

Crossrefs

Cf. A010480 (n=0), A000796 (n=1), A248673 (n=3), A248674 (n=4), A002194 (n=5).

Extensions

More terms from Geroyannis and Karageorgopoulos (2016) added by Amiram Eldar, May 15 2021

A248673 Decimal expansion of the solution to the Lane-Emden equation for a sphere of polytropic index n = 3.

Original entry on oeis.org

2, 0, 1, 8, 2, 3, 5, 9, 5, 0, 9, 6, 6, 2, 2, 8, 4, 0, 2, 8, 1, 2, 8, 1, 3, 1, 7, 0, 0, 5, 7, 9
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 11 2014

Keywords

Examples

			2.0182359509662284028128131700579...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 2.14, pp. 338-339.

Crossrefs

Cf. A010480 (n=0), A000796 (n=1), A248672 (n=2), A248674 (n=4), A002194 (n=5).

Extensions

More terms from Geroyannis and Karageorgopoulos (2016) added by Amiram Eldar, May 15 2021

A017976 Powers of sqrt(24) rounded down.

Original entry on oeis.org

1, 4, 24, 117, 576, 2821, 13824, 67723, 331776, 1625363, 7962624, 39008731, 191102976, 936209559, 4586471424, 22469029417, 110075314176, 539256706015, 2641807540224, 12942160944371, 63403380965376
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010480 (sqrt(24)).

Programs

Formula

a(n) = floor(sqrt(24^n)). - Vincenzo Librandi, Jun 24 2011

A200728 Decimal expansion of the circumradius of cyclic quadrilateral with sides 1, 2, 3, 4.

Original entry on oeis.org

2, 0, 0, 2, 6, 0, 2, 4, 7, 3, 4, 4, 9, 6, 5, 2, 6, 2, 9, 9, 5, 1, 7, 0, 5, 6, 4, 2, 1, 4, 2, 2, 3, 3, 8, 7, 1, 2, 7, 3, 6, 9, 8, 7, 9, 4, 9, 0, 7, 8, 5, 3, 0, 0, 3, 4, 6, 7, 2, 9, 8, 3, 8, 0, 3, 8, 4, 8, 3, 2, 5, 5, 5, 7, 9, 9, 0, 7, 7, 6, 4, 1, 3, 2, 4, 0
Offset: 1

Views

Author

Zak Seidov, Nov 21 2011

Keywords

Comments

Area is K = sqrt(24) = 4.89897948556635619639... (decimal expansion in A010480).

Examples

			2.0026024734496526299517...
		

Crossrefs

Programs

Formula

R = (385/96)^(1/2).
Showing 1-10 of 12 results. Next