cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A248254 Egyptian fraction representation of sqrt(27) (A010482) using a greedy function.

Original entry on oeis.org

5, 6, 34, 13516, 202119099, 64783216365098195, 22100984125756663557825370106132649, 666714143657173655990633057343413567220367208291412102910376204532308
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 27]]

A178809 Decimal expansion of the area of the regular 12-gon (dodecagon) of edge length 1.

Original entry on oeis.org

1, 1, 1, 9, 6, 1, 5, 2, 4, 2, 2, 7, 0, 6, 6, 3, 1, 8, 8, 0, 5, 8, 2, 3, 3, 9, 0, 2, 4, 5, 1, 7, 6, 1, 7, 1, 0, 0, 8, 2, 8, 4, 1, 5, 7, 6, 1, 4, 3, 1, 1, 4, 1, 8, 8, 4, 1, 6, 7, 4, 2, 0, 9, 3, 8, 3, 5, 5, 7, 9, 9, 0, 5, 0, 7, 2, 6, 4, 0, 0, 1, 1, 1, 2, 4, 3, 4, 3, 8, 5, 6, 0, 2, 7, 1, 7, 4, 5, 7, 2, 7, 0, 2, 6, 8
Offset: 2

Views

Author

Keywords

Comments

Surface area of a regular hexagonal prism with unit side length and height. - Wesley Ivan Hurt, May 04 2021

Examples

			11.196152422706631880582339024517617100828415761431141884167420938355...
		

Crossrefs

Programs

Formula

Equals 6+3*sqrt(3).
Equals 1 + A176532 = 6 + A010482. - R. J. Mathar, Jun 25 2010

Extensions

Offset corrected and keyword:cons inserted by R. J. Mathar, Jun 25 2010

A131594 Decimal expansion of sqrt(2)/3, the volume of a regular octahedron with edge length 1.

Original entry on oeis.org

4, 7, 1, 4, 0, 4, 5, 2, 0, 7, 9, 1, 0, 3, 1, 6, 8, 2, 9, 3, 3, 8, 9, 6, 2, 4, 1, 4, 0, 3, 2, 3, 2, 6, 9, 2, 8, 5, 6, 5, 5, 7, 2, 9, 1, 7, 9, 2, 3, 1, 6, 0, 2, 4, 3, 9, 2, 2, 2, 6, 5, 7, 9, 3, 3, 0, 2, 4, 4, 1, 5, 9, 4, 8, 7, 3, 6, 9, 0, 1, 2, 9, 5, 0, 1, 2, 9, 1, 7, 8, 1, 0, 9, 2, 1, 3, 8, 5, 7, 5, 7, 8, 3, 3, 7
Offset: 0

Views

Author

Omar E. Pol, Aug 30 2007

Keywords

Comments

Volume of a regular octahedron: V = ((sqrt(2))/3)* a^3, where 'a' is the edge.

Examples

			0.471404520791031682933896...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A020829 (regular tetrahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).
Cf. A179587.

Programs

Formula

Equals A002193/3 = A010464/A010482. - R. J. Mathar, Dec 11 2009

Extensions

More digits from R. J. Mathar, Dec 11 2009

A020784 Decimal expansion of 1/sqrt(27).

Original entry on oeis.org

1, 9, 2, 4, 5, 0, 0, 8, 9, 7, 2, 9, 8, 7, 5, 2, 5, 4, 8, 3, 6, 3, 8, 2, 9, 2, 6, 8, 3, 3, 9, 8, 5, 8, 1, 8, 5, 4, 9, 2, 0, 0, 5, 8, 3, 7, 5, 6, 7, 0, 8, 9, 5, 8, 6, 7, 2, 8, 6, 7, 4, 4, 2, 1, 6, 1, 3, 2, 5, 8, 9, 0, 7, 6, 7, 6, 4, 4, 4, 4, 8, 5, 6, 4, 5, 7, 1, 7, 9, 8, 5, 2, 8, 5, 8, 3, 1, 7, 5
Offset: 0

Views

Author

Keywords

Comments

This is the minimum ripple factor for a third-order Chebyshev filter for which the generalized reflectionless topology needs no negative elements. - Matthew A. Morgan, Oct 18 2017

Examples

			0.1924500897298752548363829268339858185492005837567089586728674....
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.4.3 and 8.16, pp. 495, 527.

Crossrefs

Programs

Formula

Equals Sum_{k>=0} binomial(2*k,k) * k/16^k. - Amiram Eldar, Aug 02 2020
Equals sqrt(3)/9. - Stefano Spezia, Dec 24 2024
Equals 1/A010482 = A020760/3 = sqrt(A021031) = A073010/Pi = A212886/2. - Hugo Pfoertner, Dec 24 2024

A040021 Continued fraction for sqrt(27).

Original entry on oeis.org

5, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, 5
Offset: 0

Views

Author

Keywords

Examples

			5.1961524227066318805823390... = 5 + 1/(5 + 1/(10 + 1/(5 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 04 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010482 (Decimal expansion), A010721.

Programs

  • Magma
    ContinuedFraction(Sqrt(27)); // G. C. Greubel, Feb 16 2018
  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[27],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{5},120,{10,5}] (* Harvey P. Dale, Jul 19 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 35000); x=contfrac(sqrt(27)); for (n=0, 20000, write("b040021.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 04 2009
    

Formula

G.f.: 5*(1 + x + x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025

A383852 Decimal expansion of the volume of an elongated triangular pyramid with unit edge.

Original entry on oeis.org

5, 5, 0, 8, 6, 3, 8, 3, 2, 0, 8, 9, 9, 7, 7, 2, 4, 4, 1, 1, 5, 3, 3, 5, 6, 4, 5, 7, 2, 7, 2, 7, 6, 2, 6, 4, 9, 4, 9, 8, 4, 0, 6, 3, 6, 4, 0, 0, 6, 7, 4, 1, 6, 3, 1, 1, 2, 0, 0, 8, 3, 8, 9, 6, 9, 5, 5, 4, 4, 2, 9, 4, 0, 9, 9, 0, 4, 2, 2, 6, 2, 5, 0, 7, 8, 1, 8, 8, 4, 1
Offset: 0

Views

Author

Paolo Xausa, May 19 2025

Keywords

Comments

The elongated triangular pyramid is Johnson solid J_7.

Examples

			0.55086383208997724411533564572727626494984063640067...
		

Crossrefs

Cf. A165663 (surface area).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[2] + Sqrt[27])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J7", "Volume"], 10, 100]]

Formula

Equals (sqrt(2) + 3*sqrt(3))/12 = (A002193 + A010482)/12.
Minimal polynomial: 20736*x^4 - 8352*x^2 + 625. - Stefano Spezia, May 19 2025

A041043 Denominators of continued fraction convergents to sqrt(27).

Original entry on oeis.org

1, 5, 51, 260, 2651, 13515, 137801, 702520, 7163001, 36517525, 372338251, 1898208780, 19354426051, 98670339035, 1006057816401, 5128959421040, 52295652026801, 266607219555045, 2718367847577251, 13858446457441300
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[27],50]] (* Harvey P. Dale, Apr 22 2012 *)
    CoefficientList[Series[- (x^2 - 5 x - 1)/(x^4 - 52 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    a0[n_] := (9+5*Sqrt[3]+(9-5*Sqrt[3])*(26+15*Sqrt[3])^(2*n))/(18*(26+15*Sqrt[3])^n) // Simplify
    a1[n_] := (-1+(26+15*Sqrt[3])^(2*n))/(6*Sqrt[3]*(26+15*Sqrt[3])^n) // FullSimplify
    Flatten[MapIndexed[{a0[#],a1[#]}&,Range[10]]] (* Gerry Martens, Jul 10 2015 *)

Formula

a(n) = 52*a(n-2)-a(n-4). G.f.: -(x^2-5*x-1)/(x^4-52*x^2+1). - Colin Barker, Jul 15 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((9+5*sqrt(3))/(26+15*sqrt(3))^n+(9-5*sqrt(3))*(26+15*sqrt(3))^n)/18.
a1(n) = (-1/(26+15*sqrt(3))^n+(26+15*sqrt(3))^n)/(6*sqrt(3)). (End)

A374607 a(n) is the numerator of (1134*n^3 + 2097*n^2 + 1188*n + 193)/(10368*n^4 + 20736*n^3 + 14112*n^2 + 3744*n + 320).

Original entry on oeis.org

193, 1153, 20029, 832, 111073, 50077, 327757, 7816, 724513, 251857, 1355773, 55511, 2275969, 715357, 3539533, 134909, 5200897, 1549441, 7314493, 133717, 9934753, 2862973, 13116109, 233347, 16912993, 4764817, 21379837, 746297, 26571073, 7363837, 32541133, 1119851
Offset: 0

Views

Author

Paolo Xausa, Jul 13 2024

Keywords

Comments

See Bailey and Crandall (2001), section 5 (pp. 183-185) for a derivation of this rational polynomial.
Denominators are given by A374608.

Crossrefs

Cf. A000796, A010482, A089357, A374334, A374580, A374608 (denominators).

Programs

  • Mathematica
    A374607[n_] := Numerator[(1134*n^3 + 2097*n^2 + 1188*n + 193)/(10368*n^4 + 20736*n^3 + 14112*n^2 + 3744*n + 320)];
    Array[A374607, 50, 0]
  • Python
    from math import gcd
    def A374607(n): return (p:=n*(n*(1134*n + 2097) + 1188) + 193)//gcd(p,n*(n*(n*(324*n + 648) + 441) + 117) + 10<<5) # Chai Wah Wu, Jul 14 2024

Formula

sqrt(27)*(Sum_{n >= 0} (1/64^n)*a(n)/A374608(n)) = A000796. See Bailey and Crandall (2001), p. 185.

A374608 a(n) is the denominator of (1134*n^3 + 2097*n^2 + 1188*n + 193)/(10368*n^4 + 20736*n^3 + 14112*n^2 + 3744*n + 320).

Original entry on oeis.org

320, 12320, 396032, 24035, 4222400, 2360960, 18446720, 511313, 54017600, 21079520, 125864960, 5660830, 252900032, 86027840, 458015360, 18690490, 768084800, 242991008, 1213963520, 23415035, 1830488000, 553679360, 2656476032, 49394345, 3734726720, 1095728480, 5112020480
Offset: 0

Views

Author

Paolo Xausa, Jul 13 2024

Keywords

Comments

See Bailey and Crandall (2001), section 5 (pp. 183-185) for a derivation of this rational polynomial.
Numerators are given by A374607.

Crossrefs

Cf. A000796, A010482, A089357, A374335, A374581, A374607 (numerators).

Programs

  • Mathematica
    A374608[n_] := Denominator[(1134*n^3 + 2097*n^2 + 1188*n + 193)/(10368*n^4 + 20736*n^3 + 14112*n^2 + 3744*n + 320)];
    Array[A374608, 50, 0]
  • Python
    from math import gcd
    def A374608(n): return (q:=n*(n*(n*(324*n + 648) + 441) + 117) + 10<<5)//gcd(n*(n*(1134*n + 2097) + 1188) + 193,q) # Chai Wah Wu, Jul 14 2024

Formula

sqrt(27)*(Sum_{n >= 0} (1/64^n)*A374607(n)/a(n)) = A000796. See Bailey and Crandall (2001), p. 185.

A384139 Decimal expansion of the volume of an elongated triangular bipyramid with unit edges.

Original entry on oeis.org

6, 6, 8, 7, 1, 4, 9, 6, 2, 2, 8, 7, 7, 3, 5, 1, 6, 4, 8, 4, 8, 8, 0, 9, 7, 0, 6, 0, 7, 8, 0, 8, 4, 4, 3, 8, 1, 6, 3, 9, 7, 9, 9, 5, 9, 3, 4, 8, 7, 5, 3, 1, 6, 9, 2, 1, 0, 0, 6, 5, 0, 3, 4, 5, 2, 8, 1, 0, 5, 3, 3, 3, 9, 7, 0, 8, 8, 4, 5, 1, 5, 7, 4, 5, 3, 5, 1, 1, 3, 5
Offset: 0

Views

Author

Paolo Xausa, May 20 2025

Keywords

Comments

The elongated triangular bipyramid is Johnson solid J_14.
Also the volume of an augmented triangular prism (Johnson solid J_49) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.66871496228773516484880970607808443816397995934875...
		

Crossrefs

Cf. A165663 (surface area - 2).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[8] + Sqrt[27])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J14", "Volume"], 10, 100]]

Formula

Equals (2*sqrt(2) + 3*sqrt(3))/12 = (A010466 + A010482)/12.
Equals the largest root of 20736*x^4 - 10080*x^2 + 361.
Showing 1-10 of 20 results. Next