cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A071833 Frequency ratios for notes of C-major scale starting at c = 24 and using Ptolemy's intense diatonic scale.

Original entry on oeis.org

24, 27, 30, 32, 36, 40, 45, 48, 54, 60, 64, 72, 80, 90, 96, 108, 120, 128, 144, 160, 180, 192, 216, 240, 256, 288, 320, 360, 384, 432, 480, 512, 576, 640, 720, 768, 864, 960, 1024, 1152, 1280, 1440, 1536, 1728, 1920, 2048, 2304, 2560, 2880
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2002

Keywords

Comments

All terms are 5-smooth numbers due to the 5-limit-tuning of the natural major scale, where all the ratios prime factors are all less than or equal to 5. - Federico Provvedi, Sep 09 2022
From Federico Provvedi, Apr 19 2024: (Start)
This natural scale has interesting musical and mathematical Diophantine relations between the sum of distinct interval ratios a(n)/a(0) and their own indices: with indices i(k) != j(k), Sum_{k=1..n} a(i(k)) = Sum_{k=1..n} a(j(k)) and
Sum_{k=1..n} i(k) = Sum_{k=1..n} j(k), for n=4 a solution is:
1 + 4/3 + 5/3 + 15/8 = 9/8 + 5/4 + 3/2 + 2 ,
I + IV + VI + VII = II + III + V + VIII,
1 + 4 + 6 + 7 = 2 + 3 + 5 + 8 ,
a(0) + a(3) + a(5) + a(6) = a(1) + a(2) + a(4) + a(7). (End)
In the terminology of classical music theory, a(0) to a(7) are the frequencies of the diatonic C-major scale (C,D,E,F,G,A,B,C) as tuned in "Just Intonation", starting with frequency C=24=a(0). On keyboard instruments, these are the "white notes". Each higher octave of 8 notes doubles the frequencies of the prior octave, hence, a(n+7) = 2*a(n). The a(n) frequencies of Just Intonation are uniquely determined by requiring that the notes in each of the three principal major triads, namely, the tonic triad (C:E:G), the dominant triad (G:B:D), and the subdominant triad (F:A:C), all have frequencies with exact ratios of 4:5:6. The base frequency of C=24=a(0) is the lowest frequency of C for which all a(n) are integers. (In actual practice, keyboard notes are usually tuned to non-integer frequencies, are based on a "middle C" frequency around 261.62 Hz, and have irrational frequency ratios due to "equal temperament" - see A010774.) - Robert B Fowler, Aug 21 2024

Examples

			The ratios are 24 times 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b), followed by these 7 numbers multiplied by successive powers of 2.
		

Crossrefs

Cf. A071831, A071832, subset of A051037, A010774.

Programs

  • Mathematica
    Table[ 2^Floor[n/7] ( 3*(91 + (-1)^Mod[n, 7] ) + 42 Mod[n, 7] + 8 Sqrt[3] Sin[Pi(1 + Mod[n, 7])/3] ) / 12,  {n, 0, 70}] (* Federico Provvedi, Aug 28 2012 *)
    3*2^(3+Floor[#/7])*Rationalize[2^((-1+Floor[12(1+Mod[#,7])/7])/12),2^-6]&/@Range[0,70] (* Federico Provvedi, Oct 13 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,2},{24,27,30,32,36,40,45},50] (* Harvey P. Dale, May 23 2016 *)
  • Python
    def a(n): return [24, 27, 30, 32, 36, 40, 45][n % 7] << (n // 7) # Peter Luschny, Aug 22 2024

Formula

a(n) = 2^floor(n/7) * (3*(91 + (-1)^(n mod 7)) + 42*(n mod 7) + 8*sqrt(3) * sin(Pi*(1+(n mod 7))/3))/12. - Federico Provvedi, Aug 28 2012
G.f.: -(45*x^6 + 40*x^5 + 36*x^4 + 32*x^3 + 30*x^2 + 27*x + 24) / (2*x^7 - 1). - Colin Barker, Feb 14 2014
a(b(n)) - a(b(n)+1) - a(b(n)+2) + a(b(n)+3) - a(b(n)+4) + a(b(n)+5) + a(b(n)+6) - a(b(n)+7) = 0, where b(n) = A047274(n). - Federico Provvedi, Apr 19 2024
a(n) = 2^floor(n/7) * round(24 * 2^(floor( (12*(n mod 7)+5)/7) / 12)). - Robert B Fowler, Aug 22 2024

Extensions

More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Oct 31 2005
Name made more specific by Jon E. Schoenfield, Sep 12 2022

A103922 Continued fraction expansion of the twelfth root of two, 2^(1/12).

Original entry on oeis.org

1, 16, 1, 4, 2, 7, 1, 1, 2, 2, 7, 4, 1, 2, 1, 60, 1, 3, 1, 2, 8, 5, 1, 2, 1, 1, 1, 5, 1, 1, 3, 5, 1, 1, 1, 2, 3, 1, 1, 1, 73, 3, 5, 1, 1, 1, 2, 26, 2, 1, 1, 2, 7, 2, 1, 1, 2, 3, 1, 1, 1, 14, 1, 2, 1, 4, 1, 19, 8, 3, 6, 5, 1, 2, 1, 1, 1, 5, 1, 4, 1, 1, 3, 10, 1, 1, 4, 4, 9, 4, 4, 1, 1, 1, 4, 1, 19, 16, 13
Offset: 0

Views

Author

Nicholas A Kooij (nickkooij(AT)hotmail.com), May 02 2005

Keywords

Comments

Successive note frequencies in the twelve-tone equal temperament chromatic scale are 2^(1/12) higher than their predecessor.

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[2^(1/12), 100]
    ContinuedFraction[Surd[2,12],120] (* Harvey P. Dale, Jan 02 2019 *)
  • PARI
    default(realprecision, 120); contfrac(2^(1/12)) \\ Seiichi Manyama, Feb 05 2021

A221363 Decimal expansion of the Pythagorean comma.

Original entry on oeis.org

1, 0, 1, 3, 6, 4, 3, 2, 6, 4, 7, 7, 0, 5, 0, 7, 8, 1, 2, 5
Offset: 1

Views

Author

Jonathan Sondow, Jan 19 2013

Keywords

Comments

In musical tuning, the Pythagorean comma is 12 fifths / 7 octaves = (3/2)^12 / 2^7.

Examples

			3^12 / 2^19 = 531441/524288 = 1.0136432647705078125
		

References

  • Larry Baggett, In the Dark on the Sunny Side: A Memoir of an Out-of-Sight Mathematician, Mathematical Association of America, 2012, p. 78.
  • Dave Benson, Music: A Mathematical Offering. Cambridge: Cambridge University Press (2006): 164.
  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, p. 257.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[31441/524288, 50]][[1]]

Formula

A229948/A229943 - Omar E. Pol, Oct 25 2013

A214832 Integer part of A440 piano key frequencies, start with A0 = the 1st key.

Original entry on oeis.org

27, 29, 30, 32, 34, 36, 38, 41, 43, 46, 48, 51, 55, 58, 61, 65, 69, 73, 77, 82, 87, 92, 97, 103, 110, 116, 123, 130, 138, 146, 155, 164, 174, 184, 195, 207, 220, 233, 246, 261, 277, 293, 311, 329, 349, 369, 391, 415, 440, 466, 493, 523, 554, 587, 622, 659, 698, 739, 783, 830, 880, 932, 987, 1046, 1108, 1174, 1244, 1318, 1396, 1479, 1567, 1661, 1760, 1864, 1975, 2093, 2217, 2349, 2489, 2637, 2793, 2959, 3135, 3322, 3520, 3729, 3951, 4186
Offset: 1

Views

Author

Jon Perry, Mar 07 2013

Keywords

Comments

A254531(a(k)) = k, k = 1..88. - Reinhard Zumkeller, Feb 04 2015

Examples

			Middle C is 261.626 Hz so a(40) = 261.
		

Crossrefs

Programs

  • Haskell
    a214832 = floor . (* 440) . (2 **) . (/ 12) . fromIntegral . subtract 49
    -- Reinhard Zumkeller, Nov 23 2014
  • JavaScript
    for (i=1;i<=88;i++) document.write(Math.floor(Math.pow(2,(i-49)/12)*440)+", ");
    
  • PARI
    a(n)=floor(440*2^((n-49)/12));
    

Formula

a(n) = floor[2^((n-49)/12)*440] (Hz) for 1 <= n <= 88.

A229943 Decimal expansion of 256/243, the Pythagorean semitone.

Original entry on oeis.org

1, 0, 5, 3, 4, 9, 7, 9, 4, 2, 3, 8, 6, 8, 3, 1, 2, 7, 5, 7, 2, 0, 1, 6, 4, 6, 0, 9, 0, 5, 3, 4, 9, 7, 9, 4, 2, 3, 8, 6, 8, 3, 1, 2, 7, 5, 7, 2, 0, 1, 6, 4, 6, 0, 9, 0, 5, 3, 4, 9, 7, 9, 4, 2, 3, 8, 6, 8, 3, 1, 2, 7, 5, 7, 2, 0, 1, 6, 4, 6, 0, 9, 0, 5, 3, 4, 9, 7, 9, 4, 2, 3, 8, 6, 8, 3, 1, 2, 7, 5, 7, 2, 0, 1, 6, 4, 6, 0, 9
Offset: 1

Views

Author

Omar E. Pol, Oct 25 2013

Keywords

Comments

The Pythagorean diatonic semitone is one of the musical intervals. Has a ratio of 256/243, and is often called the Pythagorean limma. It is also sometimes called the Pythagorean minor semitone.
After the initial term the sequence has period 27, repeat: 0, 5, 3, 4, 9, 7, 9, 4, 2, 3, 8, 6, 8, 3, 1, 2, 7, 5, 7, 2, 0, 1, 6, 4, 6, 0, 9.

Examples

			1.053497942386831275720164609...
		

References

  • J. M. Merino de la Fuente, Las vibraciones de la música, Editorial Club Universitario (2006), 133.
  • Alberto Rojo, La física en la vida cotidiana, Siglo Veintiuno Editores (2011), 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[256/243,10,120][[1]] (* Harvey P. Dale, Jul 17 2019 *)

Formula

A229948/A221363 = (3^7/2^11)/(3^12/2^19) = 2^8/3^5 = 256/243.

A229948 Decimal expansion of 2187/2048, the Pythagorean apotome.

Original entry on oeis.org

1, 0, 6, 7, 8, 7, 1, 0, 9, 3, 7, 5
Offset: 1

Views

Author

Omar E. Pol, Oct 25 2013

Keywords

Comments

The Pythagorean apotome 2187/2048 (also called the apotome Pythagorica) is one of the musical intervals.

Examples

			1.06787109375
		

Crossrefs

Formula

A221363 * A229943 = (3^12/2^19)*(2^8/3^5) = 3^7/2^11 = 2187/2048.

A254531 a(n) is the position of the piano key whose frequency is closest to n Hz, start with A0 = the 1st key.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22
Offset: 27

Views

Author

Reinhard Zumkeller, Feb 01 2015

Keywords

Examples

			.     | Frequency [Hz] | Piano key | Pitch
.   i | f = A079731(i) |      a(f) |
.  ---+----------------+-----------+------
.   0 |             28 |         1 |  A0
.   1 |             55 |        13 |  A1
.   2 |            110 |        25 |  A2
.   3 |            220 |        37 |  A3
.   4 |            440 |        49 |  A4    A440
.   5 |            880 |        61 |  A5
.   6 |           1760 |        73 |  A6
.   7 |           3520 |        85 |  A7 .
		

Crossrefs

Programs

  • Haskell
    a254531 = (+ 49) . round . (* 12) . logBase 2 . (/ 440) . fromIntegral
    
  • PARI
    a(n) = round(12*log(n/440)/log(2))+49 \\ Jianing Song, Oct 14 2019

Formula

a(n) = round(12*log_2(n/440)) + 49, 27 <= n <= 4308.
a(A214832(k)) = k for k = 1..88.

Extensions

Corrected by Jianing Song, Oct 14 2019

A328229 Decimal expansion of 2^(7/12).

Original entry on oeis.org

1, 4, 9, 8, 3, 0, 7, 0, 7, 6, 8, 7, 6, 6, 8, 1, 4, 9, 8, 7, 9, 9, 2, 8, 0, 7, 3, 2, 0, 2, 9, 7, 9, 5, 7, 9, 6, 3, 0, 2, 1, 5, 1, 5, 5, 3, 7, 3, 1, 7, 4, 6, 8, 7, 6, 4, 4, 1, 0, 2, 3, 8, 4, 4, 1, 0, 5, 1, 5, 7, 7, 0, 9, 4, 1, 9, 9, 1, 8, 7, 2, 0, 6, 9, 1, 0, 4, 9, 7, 9, 6, 9, 7, 8, 2, 4, 3, 5, 4, 6, 9
Offset: 1

Views

Author

Daniel Hoyt, Oct 08 2019

Keywords

Comments

2^(7/12) is the multiplier with respect to a base frequency to produce a perfect fifth interval in an equal tempered chromatic scale.

Examples

			1.498307076876681498...
		

Crossrefs

Programs

Formula

Equals A010774^7. - Michel Marcus, Oct 08 2019

Extensions

a(17) ff. corrected by Georg Fischer, Apr 04 2020

A329219 Decimal expansion of 2^(10/12) = 2^(5/6).

Original entry on oeis.org

1, 7, 8, 1, 7, 9, 7, 4, 3, 6, 2, 8, 0, 6, 7, 8, 6, 0, 9, 4, 8, 0, 4, 5, 2, 4, 1, 1, 1, 8, 1, 0, 2, 5, 0, 1, 5, 9, 7, 4, 4, 2, 5, 2, 3, 1, 7, 5, 6, 3, 2, 0, 8, 0, 6, 7, 6, 7, 5, 1, 3, 9, 8, 4, 5, 0, 3, 8, 6, 1, 6, 0, 6, 6, 3, 1, 5, 2, 4, 9, 8, 5, 2, 7, 5, 0, 5, 1, 5, 3, 4
Offset: 1

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

2^(10/12) is the ratio of the frequencies of the pitches in a minor seventh (e.g., D4-C5) in 12-tone equal temperament.

Examples

			1.78179743...
		

Crossrefs

Frequency ratios of musical intervals:
Perfect unison: 2^(0/12) = 1.0000000000
Minor second: 2^(1/12) = 1.0594630943... (A010774)
Major second: 2^(2/12) = 1.1224620483... (A010768)
Minor third: 2^(3/12) = 1.1892071150... (A010767)
Major third: 2^(4/12) = 1.2599210498... (A002580)
Perfect fourth: 2^(5/12) = 1.3348398541... (A329216)
Aug. fourth/
Dim. fifth: 2^(6/12) = 1.4142135623... (A002193)
Perfect fifth: 2^(7/12) = 1.4983070768... (A328229)
Minor sixth: 2^(8/12) = 1.5874010519... (A005480)
Major sixth: 2^(9/12) = 1.6817928305... (A011006)
Minor seventh: 2^(10/12) = 1.7817974362... (this sequence)
Major seventh: 2^(11/12) = 1.8877486253... (A329220)
Perfect octave: 2^(12/12) = 2.0000000000

Programs

  • Mathematica
    First[RealDigits[2^(5/6), 10, 100]] (* Paolo Xausa, Apr 27 2024 *)
  • PARI
    default(realprecision, 100); 2^(10/12)

Formula

Equals 2/A010768.
Equals Product_{k>=0} (1 + (-1)^k/(6*k + 1)). - Amiram Eldar, Jul 25 2020

A230437 Decimal expansion of (2/(3 - 2^(1/2)))^(1/4).

Original entry on oeis.org

1, 0, 5, 9, 7, 3, 2, 6, 7, 2, 2, 0, 2, 1, 3, 9, 8, 0, 8, 7, 4, 6, 9, 6, 9, 3, 7, 6, 9, 9, 2, 5, 8, 3, 2, 5, 1, 2, 1, 1, 6, 7, 7, 0, 5, 7, 3, 6, 2, 0, 3, 6, 5, 1, 5, 3, 0, 6, 8, 4, 1, 6, 4, 8, 2, 6, 6, 1, 8, 9, 1, 1, 4, 6, 4, 1, 1, 8, 3, 9, 2, 9, 8, 3, 2, 8, 3, 2, 7, 0, 5, 3, 4, 9, 5, 8, 3, 7, 3, 7, 9, 6, 2, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 25 2013

Keywords

Comments

Approximation to the frequency ratio of a semitone in equal temperament, suggested by Marin Mersenne.
This constant is close to A010774, the frequency ratio of a semitone in equal temperament. The difference is 0.0002695778428445...

Examples

			1.059732672202139808746969376992583251211677...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[2/(3 - 2^(1/2)), 4], 10, 120][[1]] (* Amiram Eldar, May 16 2023 *)
Showing 1-10 of 14 results. Next