cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A242038 Integer part of square root of A010809(n) = n^21.

Original entry on oeis.org

0, 1, 1448, 102275, 2097152, 21836601, 148111277, 747359260, 3037000499, 10460353203, 31622776601, 86024705429, 214488041413, 497055861119, 1082291816449, 2233357359474, 4398046511104, 8312155792152, 15148209527700, 26724698233906
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 01 2014

Keywords

Examples

			For n = 4, floor(sqrt(4^21)) = 2097152.
		

Crossrefs

Cf. A010809 (n^21).

Programs

  • PARI
    a(n) = sqrtint(n^21) \\ Michel Marcus, Oct 01 2014
  • Python
    from decimal import *
    getcontext().prec = 100
    for n in range(0,1001): print(int(Decimal(n**21).sqrt()))
    

Formula

a(n) = floor(sqrt(n^21)).

A244003 A(n,k) = k^Fibonacci(n); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 3, 4, 1, 0, 1, 5, 4, 9, 8, 1, 0, 1, 6, 5, 16, 27, 32, 1, 0, 1, 7, 6, 25, 64, 243, 256, 1, 0, 1, 8, 7, 36, 125, 1024, 6561, 8192, 1, 0, 1, 9, 8, 49, 216, 3125, 65536, 1594323, 2097152, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 17 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,    1,     1,      1,       1, ...
  0, 1,   2,    3,     4,      5,       6, ...
  0, 1,   2,    3,     4,      5,       6, ...
  0, 1,   4,    9,    16,     25,      36, ...
  0, 1,   8,   27,    64,    125,     216, ...
  0, 1,  32,  243,  1024,   3125,    7776, ...
  0, 1, 256, 6561, 65536, 390625, 1679616, ...
		

Crossrefs

Rows n=0, 1+2, 3-8 give: A000012, A001477, A000290, A000578, A000584, A001016, A010801, A010809.
Main diagonal gives: A152915.

Programs

  • Maple
    A:= (n, k)-> k^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[0, 0] = 1; A[n_, k_] := k^Fibonacci[n]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)

Formula

A(n,k) = k^A000045(n).
A(0,k) = 1, A(1,k) = k, A(n,k) = A(n-1,k) * A(n-2,k) for n>=2.

A010810 22nd powers: a(n) = n^22.

Original entry on oeis.org

0, 1, 4194304, 31381059609, 17592186044416, 2384185791015625, 131621703842267136, 3909821048582988049, 73786976294838206464, 984770902183611232881, 10000000000000000000000, 81402749386839761113321
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

Totally multiplicative sequence with a(p) = p^22 for prime p. Multiplicative sequence with a(p^e) = p^(22e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-22).
Sum_{n>=1} 1/a(n) = zeta(22) = 155366*Pi^22/13447856940643125.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2097151*zeta(22)/2097152 = 3324754717*Pi^22/287777551824322560000. (End)

A075821 List of possible last two digits (leading zeros omitted) of perfect powers.

Original entry on oeis.org

0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 61, 63, 64, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 81, 83, 84, 87, 88, 89, 91, 92, 93, 96, 97, 99
Offset: 1

Views

Author

Zak Seidov, Oct 14 2002

Keywords

Comments

An equivalent definition: Numbers equal to the final two digits of their 21st, 41st, 61st, etc. powers. - Henry Bottomley, Nov 25 2004

Examples

			With leading zeros, the initial terms are 00, 01, 03, 04, 07, 08, 09. Corresponding smallest perfect powers are 100, 2401, 658503, 2304, 16807, 140608, 2209.
1 (01!) is OK because the perfect power 2401=49^2 ends with 01. 9 (09!) is OK because the perfect power 2209=47^2 ends with 09.
11 is in the sequence since 11^21=7400249944258160101211 and the final two digits are 11.
		

Crossrefs

Formula

Consists of all numbers below 100 except those which are a multiple of 2 but not 4 and those which are a multiple of 5 but not 25. - Henry Bottomley, Nov 25 2004

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 06 2007

A036099 Centered cube numbers: (n+1)^21 + n^21.

Original entry on oeis.org

1, 2097153, 10462450355, 4408506864307, 481235204714229, 22413787798580981, 580482814723661863, 9781917900938059815, 118642361168367135017, 1109418989131512359209, 8400249944258160101211, 53405369853627861567323
Offset: 0

Views

Author

Keywords

Comments

After a(0) always has at least 4 prime factors, because a(n) = (2n + 1) * (n^2 + n + 1) * (n^6 + 3n^5 + 9n^4 + 13n^3 + 11n^2 + 5n + 1) * (n^12 + 6n^11 + 63n^10 + 260n^9 + 643n^8 + 1078n^7 + 1275n^6 + 1078n^5 + 650n^4 + 274n^3 + 77n^2 + 13n + 1). [Jonathan Vos Post, Aug 27 2011]

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^21+n^21: n in [0..20]]; // Vincenzo Librandi, Aug 28 2011
  • Mathematica
    Total/@Partition[Range[0,20]^21,2,1] (* Harvey P. Dale, Jul 02 2019 *)

A022537 Nexus numbers (n+1)^21 - n^21.

Original entry on oeis.org

1, 2097151, 10458256051, 4387586157901, 472439111692021, 21460113482174731, 536608913442906151, 8664826172771491801, 100195617094657583401, 890581010868487640791, 6400249944258160101211, 38604869965111541364901, 201059409164080691238301, 924291046880536829143651
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=20 of A047969.
Cf. A010809 (n^21).

Programs

  • Magma
    [(n+1)^21 - n^21: n in [0..20]]; // G. C. Greubel, Feb 27 2018
  • Maple
    b:=21: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
  • Mathematica
    Last[#]-First[#]&/@Partition[Range[0,20]^21,2,1] (* Harvey P. Dale, Dec 06 2013 *)
  • PARI
    for(n=0,20, print1((n+1)^21 - n^21, ", ")) \\ G. C. Greubel, Feb 27 2018
    

Formula

a(n) = A010809(n+1) - A010809(n). - Michel Marcus, Feb 27 2018

Extensions

More terms added by G. C. Greubel, Feb 27 2018

A100990 a(n) = n^21 mod 100.

Original entry on oeis.org

0, 1, 52, 3, 4, 25, 56, 7, 8, 9, 0, 11, 12, 13, 64, 75, 16, 17, 68, 19, 0, 21, 72, 23, 24, 25, 76, 27, 28, 29, 0, 31, 32, 33, 84, 75, 36, 37, 88, 39, 0, 41, 92, 43, 44, 25, 96, 47, 48, 49, 0, 51, 52, 53, 4, 75, 56, 57, 8, 59, 0, 61, 12, 63, 64, 25, 16, 67, 68, 69, 0, 71, 72, 73, 24
Offset: 0

Views

Author

Henry Bottomley, Nov 25 2004

Keywords

Comments

Also n^(20k+1) mod 100 for any positive integer k.
There are 63 numbers (A075821) where the final two digits of n^21, n^41, n^61, etc. are equal to n.
Period 100.

Examples

			a(11) = 11 since 11^21 = 7400249944258160101211 and the final two digits are 11.
		

Crossrefs

Programs

Formula

a(n) = A051126(A010809(n), 100) = a(n-100).
Showing 1-7 of 7 results.