A010892 Inverse of 6th cyclotomic polynomial. A period 6 sequence.
1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0
Offset: 0
Examples
G.f. = 1 + x - x^3 - x^4 + x^6 + x^7 - x^9 - x^10 + x^12 + x^13 - x^15 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Stefano Barbero, Umberto Cerruti, and Nadir Murru , A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7, eq (3).
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Elliptic Curves, Riordan arrays and Lattice Paths, arXiv:2507.16765 [math.CO], 2025. See p. 16.
- Tom Copeland, Addendum to Elliptic Lie Triad
- Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
- Ralph E. Griswold, Shaft Sequences, 2001.
- Guo-Niu Han and Emmanuel Pedon, Hankel continued fractions and Hankel determinants for q-deformed metallic numbers, arXiv:2502.05993 [math.NT], 2025. See p. 4.
- Scott Morrison, Emily Peters, and Noah Snyder, Knot polynomial identities and quantum group coincidences, arXiv preprint arXiv:1003.0022 [math.QA], 2014.
- Emil Daniel Schwab and Gabriela Schwab, k-Fibonacci numbers and Möbius Functions, Integers (2022) Vol. 22, #A64.
- Michael Somos, Rational Function Multiplicative Coefficients
- Peter Tingley, A minus sign ... (Two constructions of the Jones polynomial), arXiv preprint arXiv:1002.0555v2 [math.GT], 2015.
- Index entries for linear recurrences with constant coefficients, signature (1,-1).
- Index entries for sequences related to Chebyshev polynomials.
- Index to sequences related to inverse of cyclotomic polynomials
Crossrefs
Programs
-
Magma
&cat[[1,1,0,-1,-1,0]: n in [0..20]]; // Vincenzo Librandi, Apr 03 2014
-
Maple
a:=n->coeftayl(1/(x^2-x+1), x=0, n); a:=n->2*sin(Pi*(n+1)/3)/sqrt(3); A010892:=n->[1,1,0,-1,-1,0][irem(n,6)+1]; A010892:=n->Array(0..5,[1,1,0,-1,-1,0])[irem(n,6)]; A010892:=n->table([0=1,1=1,2=0,3=-1,4=-1,5=0])[irem(n,6)]; with(numtheory,cyclotomic); c := series(1/cyclotomic(6,x),x,102): seq(coeff(c,x,n),n=0..101); # Rainer Rosenthal, Jan 01 2007
-
Mathematica
a[n_] := {1, 1, 0, -1, -1, 0}[[Mod[n, 6] + 1]]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Jul 19 2013 *) CoefficientList[Series[1/Cyclotomic[6, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *) PadRight[{},120,{1,1,0,-1,-1,0}] (* Harvey P. Dale, Jul 07 2020 *)
-
PARI
{a(n) = (-1)^(n\3) * sign((n + 1)%3)}; /* Michael Somos, Sep 23 2005 */
-
PARI
{a(n) = subst( poltchebi(n) + poltchebi(n-1), 'x, 1/2) * 2/3}; /* Michael Somos, Sep 23 2005 */
-
PARI
{a(n) = [1, 1, 0, -1, -1, 0][n%6 + 1]}; /* Michael Somos, Feb 14 2006 */
-
PARI
{a(n) = my(A, p, e); if( n<0, 0, n++; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -(-1)^e, p==3, 0, p%6 == 1, 1, (-1)^e)))}; /* Michael Somos, Oct 29 2006 */
-
Python
def A010892(n): return [1,1,0,-1,-1,0][n%6] # Alec Mihailovs, Jan 01 2007
-
Sage
[lucas_number1(n,1,+1) for n in range(-5, 97)] # Zerinvary Lajos, Apr 22 2009
-
Sage
def A010892(): x, y = -1, -1 while True: yield -x x, y = y, -x + y a = A010892() [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013
Formula
G.f.: 1 / (1 - x + x^2).
a(n) = a(n-1) - a(n-2), a(0)=1, a(1)=1.
a(n) = ((-1)^floor(n/3) + (-1)^floor((n+1)/3))/2.
a(n) = 0 if n mod 6 = 2 or 5, a(n) = +1 if n mod 6 = 0 or 1, a(n) = -1 otherwise. a(n) = S(n, 1) = U(n, 1/2) (Chebyshev U(n, x) polynomials).
a(n) = sqrt(4/3)*Im((1/2 + i*sqrt(3/4))^(n+1)). - Henry Bottomley, Apr 12 2000
Binomial transform of A057078. a(n) = Sum_{k=0..n} C(k, n-k)*(-1)^(n-k). - Paul Barry, Sep 13 2003
a(n) = 2*sin(Pi*n/3 + Pi/3)/sqrt(3). - Paul Barry, Jan 28 2004
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k. - Paul Barry, Jul 28 2004
Euler transform of length 6 sequence [1, -1, -1, 0, 0, 1]. - Michael Somos, Sep 23 2005
a(n) = a(1 - n) = -a(-2 - n) for all n in Z. - Michael Somos, Feb 14 2006
a(n) = Sum_{k=0..n} (-2)^(n-k) * A085838(n,k). - Philippe Deléham, Oct 26 2006
a(n) = b(n+1) where b(n) is multiplicative with b(2^e) = -(-1)^e if e>0, b(3^e) = 0^e, b(p^e) = 1 if p == 1 (mod 6), b(p^e) = (-1)^e if p == 5 (mod 6). - Michael Somos, Oct 29 2006
Given g.f. A(x), then, B(x) = x * A(x) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 - v - 2*u*v * (1 - u). - Michael Somos, Oct 29 2006
a(n) = Sum_{k=0..n} A109466(n,k). - Philippe Deléham, Nov 14 2006
a(n) = Sum_{k=0..n} A133607(n,k). - Philippe Deléham, Dec 30 2007
a(n) = A128834(n+1). - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{k=0..n} C(n+k+1,2k+1) * (-1)^k. - Paul Barry, Jun 03 2009
a(n) = Product_{k=1..floor(n/2)} 1 - 4*(cos(k*Pi/(n+1)))^2. - Mircea Merca, Apr 01 2012
G.f.: 1 / (1 - x / (1 + x / (1 - x))). - Michael Somos, Apr 02 2012
a(n) = -1 + floor(181/819*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = -1 + floor(13/14*3^(n+1)) mod 3. - Hieronymus Fischer, Jan 04 2013
a(n) = 1/(1+r2)*(1/r1)^n + 1/(1+r1)*(1/r2)^n, with r1=(1-i*sqrt(3))/2 and r2=(1+i*sqrt(3))/2. - Ralf Stephan, Jul 19 2013
a(n) = ((n+1)^2 mod 3) * (-1)^floor((n+1)/3). - Wesley Ivan Hurt, Mar 15 2015
a(n-1) = n - Sum_{i=1..n-1} i*a(n-i). - Derek Orr, Apr 28 2015
a(n) = S(2*n+1, sqrt(3))/sqrt(3) = S(n, 1) with S(n, x) coefficients given in A049310. The S(n, 1) formula appeared already above. S(2*n, sqrt(3)) = A057079(n). See also a Feb 27 2014 comment above. - Wolfdieter Lang, Jan 16 2018
E.g.f.: sqrt(exp(x)*4/3) * cos(x*sqrt(3/4) - Pi/6). - Michael Somos, Jul 05 2018
a(n) = Determinant(Tri(n)), for n >= 1, with Tri(n) the n X n tridiagonal matrix with entries 1 (a special Toeplitz matrix). - Wolfdieter Lang, Sep 20 2019
a(n) = Product_{k=1..n}(1 + 2*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
Extensions
Entry revised by N. J. A. Sloane, Jul 16 2004
Comments