cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A101455 a(n) = 0 for even n, a(n) = (-1)^((n-1)/2) for odd n. Periodic sequence 1,0,-1,0,...

Original entry on oeis.org

0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Gerald McGarvey, Jan 20 2005

Keywords

Comments

Called X(n) (i.e., Chi(n)) in Hardy and Wright (p. 241), who show that X(n*m) = X(n)*X(m) for all n and m (i.e., X(n) is completely multiplicative) since (n*m - 1)/2 - (n - 1)/2 - (m - 1)/2 = (n - 1)*(m - 1)/2 == 0 (mod 2) when n and m are odd.
Same as A056594 but with offset 1.
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the non-principal Dirichlet character mod 4. (The principal character is A000035.)
Associated Dirichlet L-functions are for example L(1,chi) = Sum_{n>=1} a(n)/n = A003881, or L(2,chi) = Sum_{n>=1} a(n)/n^2 = A006752, or L(3,chi) = Sum_{n>=1} a(n)/n^3 = A153071. (End)
a(n) is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 0, y = -1, z is arbitrary. - Michael Somos, Nov 27 2019

Examples

			G.f. = x - x^3 + x^5 - x^7 + x^9 - x^11 + x^13 - x^15 + x^17 - x^19 + x^21 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=4, Chi_2(n).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1979, p. 241.

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), this sequence (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • GAP
    a := [1, 0];; for n in [3..10^2] do a[n] := a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x/(1+x^2))); // G. C. Greubel, Aug 23 2018
    
  • Maple
    a := n -> `if`(n mod 2=0, 0, (-1)^((n-1)/2)):
    seq(a(n), n=1..10^3); # Muniru A Asiru, Feb 02 2018
  • Mathematica
    a[ n_] := {1, 0, -1, 0}[[ Mod[ n, 4, 1]]]; (* Michael Somos, Jan 13 2014 *)
    LinearRecurrence[{0, -1}, {1, 0}, 75] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    {a(n) = if( n%2, (-1)^(n\2))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = kronecker( -4, n)}; /* Michael Somos, Mar 30 2012 */
    
  • Python
    def A101455(n): return (0,1,0,-1)[n&3] # Chai Wah Wu, Jun 21 2024

Formula

Multiplicative with a(2^e) = 0, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris May 17 2005
Euler transform of length 4 sequence [0, -1, 0, 1]. - Michael Somos, Sep 02 2005
G.f.: (x - x^3)/(1 - x^4) = x/(1 + x^2). - Michael Somos, Sep 02 2005
G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 * (1 + 2*v). - Michael Somos, Aug 04 2011
a(n + 4) = a(n), a(n + 2) = a(-n) = -a(n), a(2*n) = 0, a(2*n + 1) = (-1)^n for all n in Z. - Michael Somos, Aug 04 2011
a(n + 1) = A056594(n). - Michael Somos, Jan 13 2014
REVERT transform is A126120. STIRLING transform of A009454. BINOMIAL transform is A146559. BINOMIAL transform of A009116. BIN1 transform is A108520. MOBIUS transform of A002654. EULER transform is A111335. - Michael Somos, Mar 30 2012
Completely multiplicative with a(p) = 2 - (p mod 4). - Werner Schulte, Feb 01 2018
a(n) = (-(n mod 2))^binomial(n, 2). - Peter Luschny, Sep 08 2018
a(n) = sin(n*Pi/2) = Im(i^n) where i is the imaginary unit. - Jianing Song, Sep 09 2018
From Jianing Song, Nov 14 2018: (Start)
a(n) = ((-4)/n) (or more generally, ((-4^i)/n) for i > 0), where (k/n) is the Kronecker symbol.
E.g.f.: sin(x).
Dirichlet g.f. is the Dirichlet beta function.
a(n) = A091337(n)*A188510(n). (End)

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A091337 a(n) = (2/n), where (k/n) is the Kronecker symbol.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 30 2003

Keywords

Comments

Sinh(1) in 'reflected factorial' base is 1.01010101010101010101010101010101010101010101... see A073097 for cosh(1). - Robert G. Wilson v, May 04 2005
A non-principal character for the Dirichlet L-series modulo 8, see arXiv:1008.2547 and L-values Sum_{n >= 1} a(n)/n^s in eq (318) by Jolley. - R. J. Mathar, Oct 06 2011 [The other two non-principal characters are A101455 = {(-4/n)} and A188510 = {(-2/n)}. - Jianing Song, Nov 14 2024]
Period 8: repeat [0, 1, 0, -1, 0, -1, 0, 1]. - Wesley Ivan Hurt, Sep 07 2015 [Adapted by Jianing Song, Nov 14 2024 to include a(0) = 0.]
a(n) = (2^(2i+1)/n), where (k/n) is the Kronecker symbol and i >= 0. - A.H.M. Smeets, Jan 23 2018

Examples

			G.f. = x - x^3 - x^5 + x^7 + x^9 - x^11 - x^13 + x^15 + x^17 - x^19 - x^21 + ...
		

References

  • L. B. W. Jolley, Summation of series, Dover (1961).

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), this sequence (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Magma
    [(n mod 2) * (-1)^((n+1) div 4)  : n in [1..100]]; // Vincenzo Librandi, Oct 31 2014
  • Maple
    A091337:= n -> [0, 1, 0, -1, 0, -1, 0, 1][(n mod 8)+1]: seq(A091337(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
  • Mathematica
    KroneckerSymbol[Range[100], 2] (* Alonso del Arte, Oct 30 2014 *)
  • PARI
    {a(n) = (n%2) * (-1)^((n+1)\4)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = kronecker( 2, n)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = [0, 1, 0, -1, 0, -1, 0, 1][n%8 + 1]}; /* Michael Somos, Jul 17 2009 */
    

Formula

Euler transform of length 8 sequence [0, -1, 0, -1, 0, 0, 0, 1]. - Michael Somos, Jul 17 2009
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1, 7 (mod 8), a(p^e) = (-1)^e if p == 3, 5 (mod 8). - Michael Somos, Jul 17 2009
G.f.: x*(1 - x^2)/(1 + x^4). a(n) = -a(n + 4) = a(-n) for all n in Z. a(2*n) = 0. a(2*n + 1) = A087960(n). - Michael Somos, Apr 10 2011
Transform of Pell numbers A000129 by the Riordan array A102587. - Paul Barry, Jul 14 2005
a(n) = (2/n) = (n/2), Charles R Greathouse IV explained. - Alonso del Arte, Oct 31 2014
a(n) = (1 - (-1)^n)*(-1)^(n/4 - 1/8 - (-1)^n/8 + (-1)^((2*n + 1 - (-1)^n)/4)/4)/2. - Wesley Ivan Hurt, Sep 07 2015
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*sin(Pi*n/4).
E.g.f.: sqrt(2)*cos(x/sqrt(2))*sinh(x/sqrt(2)).
Moebius transform of A035185.
a(n) = A101455(n)*A188510(n). (End)
a(n) = Sum_{i=1..n} (-1)^(i + floor((i-3)/4)). - Wesley Ivan Hurt, Apr 27 2020
Sum_{n>=1} a(n)/n = A196525. Sum_{n>=1} a(n)/n^2 = A328895. Sum_{n>=1} a(n)/n^3 = A329715. Sum_{n>=1} a(n)/n^4 = A346728. - R. J. Mathar, Dec 17 2024

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A035179 a(n) = Sum_{d|n} Kronecker(-11, d).

Original entry on oeis.org

1, 0, 2, 1, 2, 0, 0, 0, 3, 0, 1, 2, 0, 0, 4, 1, 0, 0, 0, 2, 0, 0, 2, 0, 3, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 1, 6, 0, 2, 2, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

This is a member of an infinite family of odd weight level 11 multiplicative modular forms. g_1 = A035179, g_3 = A129522, g_5 = A065099, g_7 = A138661. - Michael Somos, Jun 07 2015
Half of the number of integer solutions to x^2 + x*y + 3*y^2 = n. - Michael Somos, Jun 05 2005
From Jianing Song, Sep 07 2018: (Start)
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -11.
Inverse Moebius transform of A011582. (End)
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -11. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Examples

			G.f. = x + 2*x^3 + x^4 + 2*x^5 + 3*x^9 + x^11 + 2*x^12 + 4*x^15 + x^16 + 2*x^20 + ...
		

References

  • Henry McKean and Victor Moll, Elliptic Curves, Cambridge University Press, 1997, page 202. MR1471703 (98g:14032).

Crossrefs

Moebius transform gives A011582.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(11), 1), 88); B := (-1 + A[1] + 2*A[2] + 4*A[4] + 2*A[5]) / 2; B; // Michael Somos, Jun 07 2015
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -11, #] &]]; (* Michael Somos, Jun 07 2015 *)
  • PARI
    {a(n) = if( n<1, 0, qfrep([2, 1; 1, 6], n, 1)[n])}; \\ Michael Somos, Jun 05 2005
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker( -11, p)*X))) [n])}; \\ Michael Somos, Jun 05 2005
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -11, d)))};
    

Formula

a(n) is multiplicative with a(11^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if p == 2, 6, 7, 8, 10 (mod 11), a(p^e) = e + 1 if p == 1, 3, 4, 5, 9 (mod 11). - Michael Somos, Jan 29 2007
Moebius transform is period 11 sequence [ 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 0, ...]. - Michael Somos, Jan 29 2007
G.f.: Sum_{k>0} Kronecker(-11, k) * x^k / (1 - x^k). - Michael Somos, Jan 29 2007
A028609(n) = 2 * a(n) unless n = 0. - Michael Somos, Jun 24 2011
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(11) = 0.947225... . - Amiram Eldar, Oct 11 2022

A175629 Legendre symbol (n,7).

Original entry on oeis.org

0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 29 2010

Keywords

Comments

This represents a non-principal Dirichlet character modulo 7.

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=7, Chi_2(n).

Crossrefs

The Legendre symbols (n,p): A091337 (p = 2, Kronecker symbol), A102283 (p = 3), A080891 (p = 5), this sequence (p = 7), A011582 (p = 11), A011583 (p = 13), ..., A011631 (p = 251), A165573 (p = 257), A165574 (p = 263). Also, many other sequences for p > 263 are in the OEIS.
Moebius transform of A035182.

Programs

  • Magma
    &cat [[0, 1, 1, -1, 1, -1, -1]^^20]; // Vincenzo Librandi, Jun 30 2018
    
  • Maple
    A := proc(n) numtheory[jacobi](n,7) ; end proc: seq(A(n),n=0..120) ;
  • Mathematica
    LinearRecurrence[{-1,-1,-1,-1,-1,-1},{0,1,1,-1,1,-1},100] (* or *) PadRight[ {},100,{0,1,1,-1,1,-1,-1}] (* Harvey P. Dale, Aug 02 2013 *)
    Table[JacobiSymbol[n, 7], {n, 0, 100}] (* Vincenzo Librandi, Jun 30 2018 *)
  • PARI
    a(n) = kronecker(n, 7); \\ Michel Marcus, Jan 28 2019

Formula

a(n) = a(n+7).
|a(n)| = A109720(n).
a(n) = -a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6).
G.f.: x*(1 + 2*x + x^2 + 2*x^3 + x^4)/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6).
a(n) == n^3 (mod 7). - Jianing Song, Jun 29 2018

A321860 Number of primes congruent to 2, 6, 7, 8, 10 modulo 11 and <= n minus number of primes congruent to 1, 3, 4, 5, 9 modulo 11 and <= n.

Original entry on oeis.org

0, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jianing Song, Nov 20 2018

Keywords

Comments

a(n) is the number of primes <= n that are quadratic nonresidues modulo 11 minus the number of primes <= n that are quadratic residues modulo 11.
It seems that there are more negative terms here than in some other sequences mentioned in crossrefs; nevertheless, among the first 10000 terms, only 138 ones are negative.
Please see the comment in A321856 describing "Chebyshev's bias" in the general case.

Examples

			Below 200, there are 20 primes congruent to 1, 3, 4, 5, 9 modulo 11 and 23 primes congruent to 2, 6, 7, 8, 10 modulo 11, so a(200) = 23 - 20 = 3.
		

Crossrefs

Cf. A112632.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: this sequence (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • PARI
    a(n) = -sum(i=1, n, isprime(i)*kronecker(-11, i))

Formula

a(n) = -Sum_{primes p<=n} Legendre(p,11) = -Sum_{primes p<=n} Kronecker(-11,p) = -Sum_{primes p<=n} A011582(p).

A321865 a(n) = A321860(prime(n)).

Original entry on oeis.org

1, 0, -1, 0, 0, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 0, 1, 0, -1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 5, 4, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 5, 4, 5, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 7, 6, 5, 4, 5, 4, 3, 4, 3, 4, 3, 2
Offset: 1

Views

Author

Jianing Song, Nov 20 2018

Keywords

Comments

Among the first 10000 terms there are only 32 negative ones.
Please see the comment in A321856 describing "Chebyshev's bias" in the general case.

Examples

			prime(46) = 199. Among the primes <= 199, there are 20 ones congruent to 1, 3, 4, 5, 9 modulo 11 and 23 ones congruent to 2, 6, 7, 8, 10 modulo 11, so a(46) = 23 - 20 = 3.
		

Crossrefs

Cf. A011582.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: this sequence (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • PARI
    a(n) = -sum(i=1, n, kronecker(-11, prime(i)))

Formula

a(n) = -Sum_{primes p<=n} Legendre(prime(i),11) = -Sum_{primes p<=n} Kronecker(-11,prime(i)) = -Sum_{i=1..n} A011582(prime(i)).

A289741 a(n) = Kronecker symbol (-20/n).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Jianing Song, Dec 27 2018

Keywords

Comments

Period 20: repeat [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1].
This sequence is one of the three non-principal real Dirichlet characters modulo 20. The other two are Jacobi or Kronecker symbols {(20/n)} (or {(n/20)}) and {((-100)/n)} (A185276).
Note that (Sum_{i=0..19} i*a(i))/(-20) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-5)). The fact Q(sqrt(-5)) has class number 2 implies that Q(sqrt(-5)) is not a unique factorization domain.

Crossrefs

Cf. A035170 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), this sequence (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Mathematica
    Array[KroneckerSymbol[-20, #]&, 100, 0] (* Amiram Eldar, Jan 10 2019 *)
  • PARI
    a(n) = kronecker(-20, n)

Formula

a(n) = 1 for n in A045797; -1 for n in A045798; 0 for n that are not coprime with 20.
Completely multiplicative with a(p) = a(p mod 20) for primes p.
a(n) = A080891(n)*A101455(n).
a(n) = -a(n+10) = -a(-n) for all n in Z.
Multiplicative with a(2) = a(5) = 0, a(p) = (-1)^floor(p/10) otherwise; equivalently: a(n) = (-1)^floor(n/10) if n is coprime to 2*5, 0 otherwise. - M. F. Hasler, Feb 28 2022

A341785 Norms of prime elements in Z[(1+sqrt(-11))/2], the ring of integers of Q(sqrt(-11)).

Original entry on oeis.org

3, 4, 5, 11, 23, 31, 37, 47, 49, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 169, 179, 181, 191, 199, 223, 229, 251, 257, 269, 289, 311, 313, 317, 331, 353, 361, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521
Offset: 1

Views

Author

Jianing Song, Feb 19 2021

Keywords

Comments

Also norms of prime ideals in Z[(1+sqrt(-11))/2], which is a unique factorization domain. The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Consists of the primes congruent to 0, 1, 3, 4, 5, 9 modulo 11 and the squares of primes congruent to 2, 6, 7, 8, 10 modulo 5.
For primes p == 1, 3, 4, 5, 9 (mod 11), there are two distinct ideals with norm p in Z[(1+sqrt(-11))/2], namely (x + y*(1+sqrt(-11))/2) and (x + y*(1-sqrt(-11))/2), where (x,y) is a solution to x^2 + x*y + 3*y^2 = p; for p = 11, (sqrt(-11)) is the unique ideal with norm p; for p == 2, 6, 7, 8, 10 (mod 11), (p) is the only ideal with norm p^2.

Examples

			norm((1 + sqrt(-11))/2) = norm((1 - sqrt(-11))/2) = 3;
norm((3 + sqrt(-11))/2) = norm((3 - sqrt(-11))/2) = 5;
norm((9 + sqrt(-11))/2) = norm((9 - sqrt(-11))/2) = 23;
norm((5 + 3*sqrt(-11))/2) = norm((5 - 3*sqrt(-11))/2) = 31.
		

Crossrefs

The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by A035179.
The total number of elements with norm n is given by A028609.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), this sequence (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341785(n) = my(disc=-11); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A322796 a(n) = Kronecker symbol (6/n).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Jianing Song, Dec 26 2018

Keywords

Comments

Period 24: repeat [0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1].
Also a(n) = Kronecker symbol (24/n).
This sequence is one of the seven non-principal real Dirichlet characters modulo 24. The other six are Jacobi or Kronecker symbols {(-6/n)} (or {(n/6)}, {(-24/n)}, {(n/24)}, A109017), {(-12/n)} (or {(n/12)}, A134667), {(12/n)} (A110161), {(-18/n)} (or {(-72/n)}), {(18/n)} (or {(72/n)}, {(n/72)}) and {(-36/n)}. These sequences all become the same after taking absolute values.

Crossrefs

Cf. A035188 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), this sequence (d=24).

Programs

  • Magma
    [KroneckerSymbol(6, n): n in [0..100]]; // Vincenzo Librandi, Jan 01 2019
  • Mathematica
    Array[KroneckerSymbol[6, #] &, 105, 0] (* Michael De Vlieger, Dec 31 2018 *)
    Table[KroneckerSymbol[6, n], {n, 0, 100}] (* Vincenzo Librandi, Jan 01 2019 *)
  • PARI
    a(n) = kronecker(6, n); \\ --- Argument order corrected by Antti Karttunen, Sep 27 2019
    

Formula

a(n) = 1 for n == 1, 5, 19, 23 (mod 24); -1 for n == 7, 11, 13, 17 (mod 24); 0 for n that are not coprime with 21.
Completely multiplicative with a(p) = a(p mod 24) for primes p.
a(n) = A091337(n)*A102283(n).
a(n) = A109017(n+12) = A109017(n-12).
a(n) = a(-n) = a(n+24) for all n in Z.

Extensions

Definition corrected by Antti Karttunen, Sep 28 2019

A316569 a(n) = Jacobi (or Kronecker) symbol (n, 15).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1, 0
Offset: 0

Views

Author

Jianing Song, Aug 05 2018

Keywords

Comments

Period 15: repeat [0, 1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, -1].
Also a(n) = Kronecker(-15, n).
This sequence is one of the three non-principal real Dirichlet characters modulo 15. The other two are Jacobi or Kronecker symbols (n, 45) (or (45, n)) and (n, 75) (or (-75, n)).
Note that (Sum_{i=0..14} i*a(i))/(-15) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-15)).

Crossrefs

Cf. A035175 (inverse Moebius transform).
Kronecker symbols: A063524 ((n, 0) or (0, n)), A000012 ((n, 1) or (1, n)), A091337 ((n, 2) or (2, n) or (n, 8) or (8, n)), A102283 ((n, 3) or (-3, n)), A000035 ((n, 4) or (4, n) or (n, 16) or (16, n)), A080891 ((n, 5) or (5, n)), A109017 ((n, 6) or (-6, n)), A175629 ((n, 7) or (-7, n)), A011655 ((n, 9) or (9, n)), A011582 ((n, 11) or (-11, n)), A134667 ((n, 12) or (-12, n)), A011583 ((n, 13) or (13, n)), this sequence ((n, 15) or (-15, n)).

Programs

  • Magma
    [KroneckerSymbol(-15, n): n in [0..100]]; // Vincenzo Librandi, Aug 28 2018
  • Mathematica
    Array[ JacobiSymbol[#, 15] &, 90, 0] (* Robert G. Wilson v, Aug 06 2018 *)
    PadRight[{},100,{0,1,1,0,1,0,0,-1,1,0,0,-1,0,-1,-1}] (* Harvey P. Dale, Feb 20 2023 *)
  • PARI
    a(n) = kronecker(n, 15)
    

Formula

a(n) = 1 for n == 1, 2, 4, 8 (mod 15); -1 for n == 7, 11, 13, 14 (mod 15); 0 for n that are not coprime with 15.
Completely multiplicative with a(p) = a(p mod 15) for primes p.
a(n) = A102283(n)*A080891(n).
a(n) = a(n+15) = -a(-n) for all n in Z.
From Chai Wah Wu, Feb 16 2021: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-5) + a(n-7) - a(n-8) for n > 7.
G.f.: (x^7 - x^5 + 2*x^4 - x^3 + x)/(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1). (End)
Showing 1-10 of 14 results. Next