T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*binomial(i,3)^n.
T(n,3) = 1; T(n,3*n) = (3*n)!/6^n =
A014606(n)
T(n,k) = binomial(k,3)*( T(n-1,k) + 3*T(n-1,k-1) + 3*T(n-1,k-2) + T(n-1,k-3) ) for 3 <= k <= 3*n with boundary conditions T(n,3) = 1 for n >= 1 and T(n,k) = 0 if (k < 3) or (k > 3*n).
Double e.g.f.: exp(-x)*Sum_{n >= 0} exp(binomial(n,3)*y)*x^n/n! = 1 + (x^3/3!)*y + (x^3/3! + 12*x^4/4! + 30*x^5/5! + 20*x^6/6!)*y^2/2! + ....
n-th row polynomial R(n,x) = Sum_{i >= 3} binomial(i,3)^n*x^i/(1 + x)^(i+1) for n >= 1.
1/(1 - x)*R(n,x/(1 - x)) = Sum_{i >= 3} binomial(i,3)^n*x^i for n >= 1.
R(n,x) = x^3 o x^3 o ... o x^3 (n factors), where o is the black diamond product of power series defined in Dukes and White.
R(n,x) = coefficient of (z_1)^3*...*(z_n)^3 in the expansion of the rational function 1/(1 + x - x*(1 + z_1)*...*(1 + z_n)).
The polynomials Sum_{k = 3..3*n} T(n,k)*x^(k-3)*(1 - x)^(3*n-k) are the row polynomials of
A174266.
Sum_{i = 3..n-1} binomial(i,3)^m = Sum_{k = 3..3*m} T(m,k)*binomial(n,k+1) for m >= 1. See Examples below.
x^3*R(n,-1 - x) = (-1)^n*(1 + x)^3*R(n,x).
R(n+1,x) = 1/3!*x^3*(d/dx)^3 ((1 + x)^3*R(n,x)) for n >= 1.
The zeros of R(n,x) belong to the interval [-1, 0].
Row sums R(n,1) =
A062208(n); alternating row sums R(n,-1) = (-1)^n.
For k a nonzero integer, the power series A(k,x) := exp( Sum_{n >= 1} 1/k^3*R(n,k)*x^n/n ) appear to have integer coefficients. See the Example section.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k) = ( binomial(x,3) )^n. Equivalently, Sum_{k = 3..3*n} (-1)^(n+k)*T(n,k)*binomial(x+k,k) = ( binomial(x+3,3) )^n. Cf. the Worpitzky-type identity Sum_{k = 1..n}
A019538(n,k)* binomial(x,k) = x^n.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k-3) = -binomial(x,3)^n + 3*binomial(x+1,3)^n - 3*binomial(x+2,3)^n + binomial(x+3,3)^n. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane.
Comments