A016116 a(n) = 2^floor(n/2).
1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152
Offset: 0
Examples
For n=5 the a(5)=4 symmetric subsets of [4] are {1,4}, {2,3}, {1,2,3,4} and the empty set. - _Dennis P. Walsh_, Oct 27 2009 For n=5 the a(5)=4 length-6 binary sequences are <1,1,0,0,0,0>, <1,1,0,0,1,1>, <1,1,1,1,0,0> and <1,1,1,1,1,1>. - _Dennis P. Walsh_, Sep 06 2018
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Volume 332, Oct 06 2014, Pages 45-54.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, arXiv:1407.2197 [math.CO], 2014.
- Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, Odd partitions in Young's lattice, arXiv:1601.01776 [math.CO], 2016. See Theorem 6 p. 12.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
- Francesco Battistoni and Giuseppe Molteni, An elementary proof for a generalization of a Pohst's inequality, arXiv:2101.06163 [math.NT], 2021.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Emeric Deutsch, Problem 1633, Math. Mag., 74 #5 (2001), p. 403.
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017.
- A. Goupil, H. Cloutier, and F. Nouboud, Enumeration of polyominoes inscribed in a rectangle Discrete Applied Mathematics 158(2010), pp. 2014-2023.
- S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1067
- D. Levin, L. Pudwell, M. Riehl, and A. Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
- D. Merlini, F. Uncini and M. C. Verri, A unified approach to the study of general and palindromic compositions, Integers 4 (2004), A23, 26 pp.
- Agustín Moreno Cañadas, Hernán Giraldo, and Robinson Julian Serna Vanegas, Some integer partitions induced by orbits of Dynkin type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 12 (2017), pp. 2745-2766.
- Laurent Noé, Spaced seed design on profile HMMs for precise HTS read-mapping efficient sliding window product on the matrix semi-group, in Rapide Bilan 2012-2013, Laurent, LIFL, Université Lille 1 - INRIA Journées au vert 11 et 12 juin 2013, Laurent, Année 2012-2013.
- Valentin Ovsienko, Villes paires et impaires (Oddtown and Eventown) I, Images des Mathématiques, CNRS, 2013 (in French).
- Dennis Walsh, Notes on symmetric subsets of {1, 2, ..., n}
- A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264 | doi:10.1246/bcsj.20140204. See Tables 1 and 2 (and text). - _N. J. A. Sloane_, Mar 26 2015
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Crossrefs
a(n) = A094718(3, n).
Cf. A001333.
See A052955 for partial sums (without the initial term).
A000079 gives the odd-indexed terms of a(n).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Programs
-
GAP
List([0..45],n->2^Int(n/2)); # Muniru A Asiru, Apr 03 2018
-
Magma
[2^Floor(n/2): n in [0..50]]; // Vincenzo Librandi, Aug 16 2011
-
Maple
A016116:= proc(n): 2^floor(n/2) end: seq(A016116(n), n=0..42); # Dennis P. Walsh, Oct 27 2009
-
Mathematica
Table[ 2^Floor[n/2], {n, 0, 42}] (* Robert G. Wilson v, Jun 05 2004 *) With[{c=2^Range[0,30]},Riffle[c,c]] (* Harvey P. Dale, Jan 23 2015 *) CoefficientList[Series[(1+x)/(1-2*x^2), {x, 0, 50}], x] (* Stefano Spezia, Sep 07 2018 *)
-
Maxima
makelist(2^floor(n/2), n, 0, 50); /* Martin Ettl, Oct 17 2012 */
-
PARI
a(n)=if(n<0,0,2^(n\2))
-
Python
def A016116(n): return 1 << n//2 # Chai Wah Wu, Jun 07 2022
-
Sage
def A016116(): x, y = -1, 0 while True: yield -x x, y = x + y, x - y a = A016116(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013
Formula
a(n) = a(n-1)*a(n-2)/a(n-3) = 2*a(n-2) = 2^A004526(n).
G.f.: (1+x)/(1-2*x^2).
a(n) = (1/2 + sqrt(1/8))*sqrt(2)^n + (1/2 - sqrt(1/8))*(-sqrt(2))^n. - Ralf Stephan, Mar 11 2003
E.g.f.: cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2). - Paul Barry, Jul 16 2003
The signed sequence (-1)^n*2^floor(n/2) has a(n) = (sqrt(2))^n(1/2 - sqrt(2)/4) + (-sqrt(2))^n(1/2 + sqrt(2)/4). It is the inverse binomial transform of A000129(n-1). - Paul Barry, Apr 21 2004
Diagonal sums of A046854. a(n) = Sum_{k=0..n} binomial(floor(n/2), k). - Paul Barry, Jul 07 2004
a(n) = a(n-2) + 2^floor((n-2)/2). - Paul Barry, Jul 14 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), floor(k/2)). - Paul Barry, Jul 15 2004
E.g.f.: cosh(asinh(1) + sqrt(2)*x)/sqrt(2). - Michael Somos, Feb 28 2005
a(n) = Sum_{k=0..n} A103633(n,k). - Philippe Deléham, Dec 03 2006
a(n) = 2^(n/2)*((1 + (-1)^n)/2 + (1-(-1)^n)/(2*sqrt(2))). - Paul Barry, Nov 12 2009
a(n) = 2^((2*n - 1 + (-1)^n)/4). - Luce ETIENNE, Sep 20 2014
Comments
, with s(1)=1 and with s(i+1)=s(i) for odd i. - Dennis P. Walsh, Sep 06 2018