cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A017437 a(n) = 11*n + 4.

Original entry on oeis.org

4, 15, 26, 37, 48, 59, 70, 81, 92, 103, 114, 125, 136, 147, 158, 169, 180, 191, 202, 213, 224, 235, 246, 257, 268, 279, 290, 301, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 422, 433, 444, 455, 466, 477, 488, 499, 510, 521, 532, 543, 554, 565, 576, 587
Offset: 0

Views

Author

Keywords

Comments

These numbers do not occur in A000045 (Fibonacci numbers). - Arkadiusz Wesolowski, Jan 08 2012

Crossrefs

Powers of the form (11*n+4)^m: this sequence (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

Formula

a(0)=4, a(1)=15, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, May 19 2012
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (4 + 7*x)/(1-x)^2.
E.g.f.: (4 + 11*x)*exp(x). (End)

A017439 a(n) = (11*n + 4)^3.

Original entry on oeis.org

64, 3375, 17576, 50653, 110592, 205379, 343000, 531441, 778688, 1092727, 1481544, 1953125, 2515456, 3176523, 3944312, 4826809, 5832000, 6967871, 8242408, 9663597, 11239424, 12977875, 14886936, 16974593, 19248832, 21717639, 24389000, 27270901, 30371328, 33698267, 37259704, 41063625
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), this sequence (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

  • GAP
    List([0..40], n-> (11*n + 4)^3); # G. C. Greubel, Sep 18 2019
  • Magma
    [(11*n + 4)^3: n in [0..40]]; // G. C. Greubel, Sep 18 2019
    
  • Maple
    seq((11*n + 4)^3, n=0..40); # G. C. Greubel, Sep 18 2019
  • Mathematica
    (11*Range[40] -7)^3 (* G. C. Greubel, Sep 18 2019 *)
    LinearRecurrence[{4,-6,4,-1},{64,3375,17576,50653},40] (* Harvey P. Dale, Feb 10 2024 *)
  • PARI
    vector(40, n, (11*n-7)^3) \\ G. C. Greubel, Sep 18 2019
    
  • Sage
    [(11*n + 4)^3 for n in (0..40)] # G. C. Greubel, Sep 18 2019
    

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (64 + 3119*x + 4460*x^2 + 343*x^3)/(1-x)^4.
E.g.f.: (64 + 3311*x + 5445*x^2 + 1331*x^3)*exp(x). (End)

Extensions

Terms a(23) onward added by G. C. Greubel, Sep 18 2019

A017440 a(n) = (11*n + 4)^4.

Original entry on oeis.org

256, 50625, 456976, 1874161, 5308416, 12117361, 24010000, 43046721, 71639296, 112550881, 168896016, 244140625, 342102016, 466948881, 623201296, 815730721, 1049760000, 1330863361, 1664966416, 2058346161, 2517630976, 3049800625, 3662186256, 4362470401, 5158686976, 6059221281
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), this sequence (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (256 +49345*x +206411*x^2 -92971*x^3 +2401*x^4)/(1-x)^5.
E.g.f.: (256 + 50369*x + 177991*x^2 + 109142*x^3 + 14641*x^4)*exp(x). (End)

Extensions

Terms a(20) onward added by G. C. Greubel, Sep 18 2019

A017441 a(n) = (11*n + 4)^5.

Original entry on oeis.org

1024, 759375, 11881376, 69343957, 254803968, 714924299, 1680700000, 3486784401, 6590815232, 11592740743, 19254145824, 30517578125, 46525874176, 68641485507, 98465804768, 137858491849, 188956800000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), this sequence (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+4)^5); # G. C. Greubel, Sep 18 2019
  • Magma
    [(11*n+4)^5: n in [0..20]]; // G. C. Greubel, Sep 18 2019
    
  • Maple
    seq((11*n+4)^5, n=0..20); # G. C. Greubel, Sep 18 2019
  • Mathematica
    (11 Range[0,20]+4)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {1024,759375,11881376,69343957,254803968,714924299},20] (* Harvey P. Dale, Jan 30 2017 *)
  • PARI
    vector(20, n, (11*n-7)^5) \\ G. C. Greubel, Sep 18 2019
    
  • Sage
    [(11*n+4)^5 for n in (0..20)] # G. C. Greubel, Sep 18 2019
    

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (1024 +753231*x +7340486*x^2 +9425846*x^3 +1788726*x^4 +16807*x^5 )/(1-x)^6.
E.g.f.: (1024 +758351*x +5181825*x^2 +5996155*x^3 +1903330*x^4 +161051*x^5)*exp(x). (End)

A017442 a(n) = (11*n + 4)^6.

Original entry on oeis.org

4096, 11390625, 308915776, 2565726409, 12230590464, 42180533641, 117649000000, 282429536481, 606355001344, 1194052296529, 2194972623936, 3814697265625, 6327518887936, 10090298369529, 15557597153344
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), this sequence (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+4)^6); # G. C. Greubel, Sep 18 2019
  • Magma
    [(11*n+4)^6: n in [0..20]]; // G. C. Greubel, Sep 18 2019
    
  • Maple
    A017442:=n->(11*n+4)^6; seq(A017442(n), n=0..20); # Wesley Ivan Hurt, Nov 11 2013
  • Mathematica
    (11*Range[0,20]+4)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {4096, 11390625, 308915776, 2565726409, 12230590464, 42180533641, 117649000000}, 20] (* Harvey P. Dale, Feb 18 2012 *)
  • PARI
    vector(20, n, (11*n-7)^6) \\ G. C. Greubel, Sep 18 2019
    
  • Sage
    [(11*n+4)^6 for n in (0..20)] # G. C. Greubel, Sep 18 2019
    

Formula

From Harvey P. Dale, Feb 18 2012: (Start)
a(0)=4096, a(1)=11390625, a(2)=308915776, a(3)=2565726409, a(4)=12230590464, a(5)=42180533641, a(6)=117649000000, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) - 35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7).
G.f.: ((x*(x*(x*(x*(x*(117649*x +33188681) +359208382) +642375742) +229267417) +11361953) +4096)/(1-x)^7). (End)
a(n) = A017437(n)^6. - Michel Marcus, Nov 12 2013
E.g.f.: (4096 +11386529*x +143069311*x^2 +278857810*x^3 +157317545*x^4 +30438639*x^5 +1771561*x^6)*exp(x). - G. C. Greubel, Sep 18 2019

A017443 a(n) = (11*n + 4)^7.

Original entry on oeis.org

16384, 170859375, 8031810176, 94931877133, 587068342272, 2488651484819, 8235430000000, 22876792454961, 55784660123648, 122987386542487, 250226879128704, 476837158203125, 860542568759296, 1483273860320763
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), this sequence (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+4)^7); # G. C. Greubel, Sep 18 2019
  • Magma
    [(11*n+4)^7: n in [0..20]]; // G. C. Greubel, Sep 18 2019
    
  • Maple
    seq((11*n+4)^7, n=0..20); # G. C. Greubel, Sep 18 2019
  • Mathematica
    (11*Range[40] -7)^7 (* G. C. Greubel, Sep 18 2019 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{16384,170859375,8031810176,94931877133,587068342272,2488651484819,8235430000000,22876792454961},20] (* Harvey P. Dale, Dec 29 2024 *)
  • PARI
    vector(20, n, (11*n-7)^7) \\ G. C. Greubel, Sep 18 2019
    
  • Sage
    [(11*n+4)^7 for n in (0..20)] # G. C. Greubel, Sep 18 2019
    

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (16384 +170728303*x +6665393928*x^2 +35460540721*x^3 +42937032016*x^4 +12375175257*x^5 +605631688*x^6 +823543*x^7)/(1-x)^8.
E.g.f.: (16384 +170842991*x +3845053905*x^2 +11891501391*x^3 +10618678070*x^4 +3526372696*x^5 +458834299*x^6 +19487171*x^7)*exp(x). (End)

A017444 a(n) = (11*n + 4)^8.

Original entry on oeis.org

65536, 2562890625, 208827064576, 3512479453921, 28179280429056, 146830437604321, 576480100000000, 1853020188851841, 5132188731375616, 12667700813876161, 28525864220672256, 59604644775390625, 117033789351264256, 218041257467152161, 388379855336079616
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), this sequence (m=8), A017445 (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+4)^8); # G. C. Greubel, Sep 18 2019
  • Magma
    [(11*n+4)^8: n in [0..20]]; // G. C. Greubel, Sep 18 2019
    
  • Maple
    seq((11*n+4)^8, n=0..20); # G. C. Greubel, Sep 18 2019
  • Mathematica
    (11*Range[0,20]+4)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36, -9,1}, {65536,2562890625,208827064576,3512479453921, 28179280429056, 146830437604321,576480100000000,1853020188851841,5132188731375616}, 20] (* Harvey P. Dale, Sep 21 2016 *)
  • PARI
    vector(20, n, (11*n-7)^8) \\ G. C. Greubel, Sep 18 2019
    
  • Sage
    [(11*n+4)^8 for n in (0..20)] # G. C. Greubel, Sep 18 2019
    

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (65536 +2562300801*x +185763408247*x^2 +1725294430213*x^3 +3869465113539*x^4 +2447616620803*x^5 +401274300613*x^6 +10968077367*x^7 +5764801*x^8)/(1-x)^9.
E.g.f.: (65536 +2562825089*x +101850674431*x^2 +482281144422*x^3 +640503062661*x^4 +324861447834*x^5 +70908500586*x^6 +6625638140*x^7 +214358881*x^8)*exp(x). (End)

Extensions

Terms a(12) onward added by G. C. Greubel, Sep 18 2019

A017445 a(n) = (11*n + 4)^9.

Original entry on oeis.org

262144, 38443359375, 5429503678976, 129961739795077, 1352605460594688, 8662995818654939, 40353607000000000, 150094635296999121, 472161363286556672, 1304773183829244583, 3251948521156637184
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), this sequence (m=9), A017446 (m=10), A017447 (m=11), A017448 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (262144 +38440737935*x +5045081881706*x^2 +77396622719912*x^3 +292702580123078*x^4 +341752101417866*x^5 +125993865875030*x^6 +12525368984504*x^7 +197955754298*x^8 +40353607*x^9)/(1-x)^10.
E.g.f.: (262144 +38443097231*x +2676308611185*x^2 +18964759762355*x^3 +36049239596370*x^4 +26212359111477*x^5 +8537070967194*x^6 +1316670195786*x^7 +92603036592*x^8 +2357947691*x^9)*exp(x). (End)

A017446 a(n) = (11*n + 4)^10.

Original entry on oeis.org

1048576, 576650390625, 141167095653376, 4808584372417849, 64925062108545024, 511116753300641401, 2824752490000000000, 12157665459056928801, 43438845422363213824, 134391637934412192049
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), this sequence (m=10), A017447 (m=11), A017448 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (1048576 +576638856289*x +134823999028181*x^2 +3287461918700048*x^3 +19699677304461320*x^4 +38310933951284930*x^5 +26248927783563266*x^6 + 6054309522746024*x^7 +381447629946032*x^8 +3567359998885*x^9 +282475249* x^10)/(1-x)^11.
E.g.f.: (1048576 +576649342049*x +70006897960351*x^2 +731135505930170*x^3 +1938975858011665*x^4 +1943070823137213*x^5 +885930917929827*x^6 + 200558066497800*x^7 +23002851520110*x^8 +1261502014685*x^9 +25937424601* x^10)*exp(x). (End)

A017447 a(n) = (11*n + 4)^11.

Original entry on oeis.org

4194304, 8649755859375, 3670344486987776, 177917621779460413, 3116402981210161152, 30155888444737842659, 197732674300000000000, 984770902183611232881, 3996373778857415671808, 13842338707244455781047
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+4)^m: A017437 (m=1), A017438 (m=2), A017439 (m=3), A017440 (m=4), A017441 (m=5), A017442 (m=6), A017443 (m=7), A017444 (m=8), A017445 (m=9), A017446 (m=10), this sequence (m=11), A017448 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (4194304 +8649705527727*x +3566547693499340*x^2 +134444370899578971*x^3 +1221731311784947392*x^4 +3698421546351487230*x^5 +4212702849829094280*x^6 +1829094388304154510*x^7 +277265562864875904*x^8 +11429419348320083*x^9 +64244682158316*x^10 +1977326743*x^11)/(1-x)^12.
E.g.f.: (4194304 +8649751665071*x +1826522489731665*x^2 +27822089596980151*x^3 +101113331749791790*x^4 +135969913003223882*x^5 +83388943309597233*x^6 +25990443483549897*x^7 +4322401071325920*x^8 +382966074233765*x^9 +16833388566049*x^10 +285311670611*x^11)*exp(x). (End)
Showing 1-10 of 11 results. Next