cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A159822 Continued fraction for Pi*e A019609.

Original entry on oeis.org

8, 1, 1, 5, 1, 3, 1, 4, 12, 3, 2, 1, 5, 2, 12, 1, 1, 1, 10, 2, 2, 2, 3, 8, 3, 2, 2, 2, 29, 1, 1, 13, 1, 1, 8, 11, 16, 3, 1, 4, 163, 2, 1, 1, 1, 5, 1, 6, 1, 17, 5, 1, 3, 6, 3, 1, 4, 1, 1, 1, 5, 1, 7, 15, 4, 1, 1, 1, 9, 1, 1, 4, 1, 1, 9, 1, 55, 14, 14, 1, 3, 2, 3, 7, 1, 118, 1, 2, 29, 1, 2, 2, 1, 4, 1, 2, 1
Offset: 0

Views

Author

Harry J. Smith, Apr 27 2009

Keywords

Examples

			Pi*e = 8.53973422267356706546... = 8 + 1/(1 + 1/(1 + 1/(5 + 1/(1 + ...))))
		

Programs

  • Mathematica
    ContinuedFraction[E*Pi,5! ] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi*exp(1)); for (n=1, 20001, write("b159822.txt", n-1, " ", x[n])); }

A019645 Decimal expansion of sqrt(Pi*e).

Original entry on oeis.org

2, 9, 2, 2, 2, 8, 2, 3, 6, 5, 3, 2, 2, 2, 7, 7, 8, 6, 4, 5, 4, 1, 6, 2, 3, 0, 7, 6, 1, 0, 7, 6, 8, 2, 3, 1, 5, 3, 9, 7, 9, 0, 7, 5, 5, 2, 6, 4, 6, 5, 6, 6, 8, 5, 9, 0, 1, 7, 7, 4, 0, 0, 1, 1, 4, 7, 1, 9, 5, 6, 1, 7, 2, 3, 6, 2, 9, 5, 6, 8, 8, 4, 4, 4, 3, 9, 5, 6, 5, 6, 7, 7, 6, 7, 0, 5, 8, 9, 2
Offset: 1

Views

Author

Keywords

Examples

			2.9222823653222778645416230761076823153979...
		

Crossrefs

Cf. A019609.

Programs

  • Magma
    C := ComplexField(); [Sqrt(Pi(C)*Exp(1))]; // G. C. Greubel, Nov 17 2017
  • Mathematica
    RealDigits[Sqrt[Pi E],10,120][[1]] (* Harvey P. Dale, Jun 14 2014 *)
  • PARI
    sqrt(Pi*exp(1)) \\ G. C. Greubel, Nov 17 2017
    

Formula

Equals A002161*A019774. - R. J. Mathar, Apr 11 2024

A073244 Decimal expansion of Pi - e.

Original entry on oeis.org

4, 2, 3, 3, 1, 0, 8, 2, 5, 1, 3, 0, 7, 4, 8, 0, 0, 3, 1, 0, 2, 3, 5, 5, 9, 1, 1, 9, 2, 6, 8, 4, 0, 3, 8, 6, 4, 3, 9, 9, 2, 2, 3, 0, 5, 6, 7, 5, 1, 4, 6, 2, 4, 6, 0, 0, 7, 9, 7, 6, 9, 6, 4, 5, 8, 3, 7, 3, 9, 7, 7, 5, 9, 3, 2, 6, 6, 1, 4, 0, 4, 0, 5, 6, 6, 5, 2, 6, 4, 6, 8, 1, 6, 9, 5, 0, 6, 4, 0, 5, 5, 4, 6, 8
Offset: 0

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Examples

			0.42331082513074800310235591192...
		

Crossrefs

Cf. A059742 (Pi+e), A000796 (Pi), A001113 (e), A019609 (Pi*e), A061382 (Pi/e), A061360 (e/Pi), A039661 (e^Pi), A059850 (Pi^e), A073233 (Pi^Pi), A073226 (e^e), A049006 (i^i = e^(-Pi/2)).
Cf. A110564 for continued fraction for Pi - e.

Programs

A131563 Decimal expansion of e*Pi*phi, where phi = (sqrt(5) + 1)/2.

Original entry on oeis.org

1, 3, 8, 1, 7, 5, 8, 0, 2, 2, 7, 1, 7, 6, 4, 9, 4, 4, 3, 9, 7, 3, 6, 7, 5, 6, 2, 0, 1, 2, 0, 7, 5, 9, 5, 6, 5, 9, 2, 1, 9, 2, 1, 2, 5, 4, 2, 5, 1, 5, 3, 6, 4, 2, 1, 6, 8, 9, 5, 0, 8, 4, 6, 5, 8, 2, 0, 9, 0, 9, 0, 8, 4, 6, 6, 9, 4, 1, 5, 8, 6, 4, 7, 5, 3, 7, 9, 9, 7, 2, 2, 3, 2, 5, 3, 6, 1, 8, 4
Offset: 2

Author

Omar E. Pol, Aug 27 2007, Dec 17 2008

Keywords

Examples

			e*Pi*phi = 13.817580227...
		

Crossrefs

Decimal expansion of e: A001113. Decimal expansion of Pi: A000796. Decimal expansion of phi: A001622. e*Pi: A019609. Pi*phi: A094886. e*phi: A094885.

Programs

  • Maple
    exp(1)*Pi*(1+sqrt(5))/2;
  • Mathematica
    phi=(5^(1/2)+1)/2;RealDigits[N[Pi*E*phi,6! ]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
    RealDigits[E*Pi*GoldenRatio,10,120][[1]] (* Harvey P. Dale, Nov 02 2020 *)
  • PARI
    { default(realprecision, 20080); phi = (1 + sqrt(5))/2; x=exp(1)*Pi*phi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b131563.txt", n, " ", d)); } \\ Harry J. Smith, Apr 26 2009

Extensions

More terms from N. J. A. Sloane, Dec 19 2008

A019610 Decimal expansion of Pi*e/2.

Original entry on oeis.org

4, 2, 6, 9, 8, 6, 7, 1, 1, 1, 3, 3, 6, 7, 8, 3, 5, 3, 2, 7, 3, 1, 7, 7, 5, 4, 3, 4, 7, 7, 3, 2, 8, 7, 2, 4, 7, 5, 1, 7, 4, 4, 4, 2, 6, 7, 8, 8, 2, 5, 5, 7, 4, 8, 0, 9, 3, 9, 8, 0, 0, 5, 6, 5, 0, 8, 9, 6, 1, 4, 3, 0, 5, 5, 7, 8, 6, 6, 5, 4, 0, 3, 7, 8, 6, 2, 8, 1, 9, 3, 4, 8, 5, 5, 2, 3, 6, 9, 7
Offset: 1

Keywords

Examples

			4.26986711133678353273177543477328724751744426788255748...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 136.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)*Exp(1)/2; // G. C. Greubel, Aug 24 2018
  • Maple
    Digits:=100: evalf(Pi*exp(1)/2); # Wesley Ivan Hurt, Aug 09 2014
  • Mathematica
    RealDigits[(Pi*E)/2,10,120][[1]] (* Harvey P. Dale, Apr 16 2014 *)
  • PARI
    { default(realprecision, 100); x=(1/2)*Pi*exp(1); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Altug Alkan, Nov 13 2015
    

Formula

Melzak's formula: lim_{n->infinity} Product_{k=1..2n+1} (1+2/k)^(k*(-1)^(k+1)) = Pi*e/2. - Jean-François Alcover, Apr 25 2014

A092036 Decimal expansion of (Pi*e)^2.

Original entry on oeis.org

7, 2, 9, 2, 7, 0, 6, 0, 5, 9, 3, 9, 0, 2, 1, 1, 2, 7, 2, 3, 9, 5, 6, 0, 9, 1, 9, 0, 0, 2, 8, 6, 6, 5, 9, 0, 9, 8, 8, 1, 5, 8, 6, 0, 9, 6, 1, 1, 6, 4, 0, 4, 5, 6, 0, 0, 3, 2, 1, 8, 8, 3, 6, 6, 9, 4, 9, 1, 2, 8, 7, 3, 9, 5, 3, 3, 8, 4, 0, 3, 1, 8, 8, 6, 4, 3, 5, 1, 5, 2, 6, 3, 2, 7, 6, 1, 2, 1, 4, 0
Offset: 2

Author

Mohammad K. Azarian, Mar 26 2004

Keywords

Examples

			72.927060...
		

Crossrefs

Cf. A019609 (Pi*e).

Programs

A131566 Decimal expansion of (e*Pi*phi)^2.

Original entry on oeis.org

1, 9, 0, 9, 2, 5, 5, 2, 3, 3, 3, 4, 4, 5, 8, 8, 2, 3, 6, 9, 0, 3, 9, 5, 2, 4, 1, 4, 2, 9, 1, 0, 9, 4, 0, 6, 0, 7, 2, 4, 4, 3, 4, 6, 4, 1, 0, 8, 7, 8, 4, 6, 9, 4, 2, 6, 5, 0, 7, 5, 7, 1, 9, 2, 0, 2, 0, 0, 2, 1, 1, 9, 2, 8, 1, 7, 1, 1, 0, 9, 4, 5, 7, 6, 5, 8, 8, 6, 1, 1, 2, 9, 9, 6, 2, 8, 9, 9, 7, 1, 0, 6, 8, 2, 7
Offset: 3

Author

Omar E. Pol, Aug 27 2007

Keywords

Comments

phi = (5^(1/2) + 1)/2 = (1 + sqrt(5))/2.

Examples

			190.925523334...
		

Programs

  • Mathematica
    phi=(5^(1/2)+1)/2;RealDigits[N[(Pi*E*phi)^2,6! ]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
    RealDigits[(E*Pi*GoldenRatio)^2,10,120][[1]] (* Harvey P. Dale, May 01 2017 *)
  • PARI
    { default(realprecision, 20080); phi = (1 + sqrt(5))/2; x=(exp(1)*Pi*phi)^2/100; for (n=3, 20000, d=floor(x); x=(x-d)*10; write("b131566.txt", n, " ", d)); } \\ Harry J. Smith, Apr 27 2009

Extensions

More terms from Harry J. Smith, Apr 26 2009
Fixed my PARI program, had -n Harry J. Smith, May 19 2009

A121246 a(n) = ceiling((Pi^n)*(e^n)).

Original entry on oeis.org

9, 73, 623, 5319, 45418, 387853, 3312154, 28284913, 241545634, 2062735515, 17615213066, 150429237854, 1284625710592, 10970362144063, 93683977036771, 800036264817078, 6832097070038331, 58344293161634134, 498244757010106386
Offset: 1

Author

Mohammad K. Azarian, Aug 22 2006

Keywords

Crossrefs

Programs

A203816 Decimal expansion of e*gamma*Pi, where gamma is Euler's constant.

Original entry on oeis.org

4, 9, 2, 9, 2, 6, 8, 3, 6, 7, 4, 2, 2, 8, 9, 7, 8, 9, 1, 5, 2, 6, 3, 0, 4, 7, 9, 8, 0, 3, 4, 2, 3, 1, 0, 2, 6, 2, 8, 6, 5, 2, 9, 9, 2, 3, 3, 2, 6, 6, 0, 7, 6, 5, 8, 0, 3, 2, 2, 6, 6, 6, 4, 7, 3, 9, 9, 9, 8, 6, 5, 6, 5, 6, 8, 1, 1, 5, 7, 3, 9, 6, 7, 3, 3, 5, 6, 2, 5, 5, 7, 9, 6, 1, 7, 9, 8, 6
Offset: 1

Author

Yalcin Aktar, Jan 06 2012

Keywords

Examples

			4.929268367422897891526304798034231...
		

Crossrefs

Cf. A001620 (Euler's constant), A019609 (e*Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1)*Pi(R)*EulerGamma(R); // G. C. Greubel, Sep 03 2018
  • Mathematica
    RealDigits[E*EulerGamma*Pi, 10, 105][[1]] (* Alonso del Arte, Jan 06 2012 *)
  • PARI
    exp(1)*Euler*Pi \\ Charles R Greathouse IV, Jan 15 2012
    

A096411 Decimal expansion of 1/sqrt(Pi*e).

Original entry on oeis.org

3, 4, 2, 1, 9, 8, 2, 8, 0, 3, 1, 2, 2, 1, 6, 5, 3, 3, 1, 7, 9, 2, 5, 1, 1, 8, 3, 4, 7, 0, 0, 9, 7, 0, 5, 7, 9, 3, 5, 7, 3, 4, 8, 4, 7, 3, 1, 1, 7, 7, 1, 9, 3, 4, 3, 0, 5, 7, 7, 9, 7, 5, 5, 1, 1, 6, 3, 3, 8, 4, 5, 1, 2, 7, 0, 9, 7, 0, 3, 2, 0, 5, 4, 4, 6, 1, 5, 3, 1, 8, 3, 4, 2, 7, 0, 3, 1, 7, 1, 5, 3, 6, 1, 1, 7
Offset: 0

Author

Mohammad K. Azarian, Aug 07 2004

Keywords

Examples

			0.3421982803122165331792511834700...
		

Crossrefs

Programs

Extensions

Definition clarified by R. J. Mathar, Feb 05 2009
Showing 1-10 of 41 results. Next