cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A020472 Primes that contain digits 8 and 9 only.

Original entry on oeis.org

89, 8999, 89899, 89989, 98899, 98999, 99989, 888989, 898889, 989999, 998989, 8888989, 8889889, 8988989, 8989999, 8998889, 8999899, 9888889, 9889889, 9899999, 9989899, 9999889, 88888999, 88898989, 88989899, 89888989, 89889889, 89898889, 89999999, 98888989
Offset: 1

Views

Author

Keywords

Comments

Or, primes with minimal digit 8.

Crossrefs

Cf. A020449 (digits 0 & 1), ..., A020471 (digits 7 & 9). - M. F. Hasler, Mar 18 2010

Programs

  • Mathematica
    Select[Prime[Range[80000]], Min[IntegerDigits[#]] == 8 &] (* Zak Seidov, May 07 2005 *)
    Flatten[Table[Select[FromDigits/@Tuples[{8, 9}, n], PrimeQ], {n, 8}]] (* Vincenzo Librandi, Jul 27 2012 *)
  • PARI
    for(nd=1,9, p=vector(nd,i,10^(nd-i))~; forvec(v=vector(nd,i,[8+(i==nd),9]), isprime(v*p) && print1(v*p","))) \\ M. F. Hasler, Mar 18 2010
    
  • Python
    from sympy import isprime
    from itertools import count, islice, product
    def agen(): # generator of terms
        for d in count(2):
            for first in product("89", repeat=d-1):
                t = int("".join(first) + "9")
                if isprime(t): yield t
    print(list(islice(agen(), 30))) # Michael S. Branicky, Nov 15 2022

Extensions

Edited by N. J. A. Sloane, Jan 26 2008 at the suggestion of Lekraj Beedassy

A260831 Primes having only {5, 7, 9} as digits.

Original entry on oeis.org

5, 7, 59, 79, 97, 557, 577, 599, 757, 797, 977, 997, 5557, 5779, 7559, 7577, 7757, 7759, 55579, 55799, 55997, 57557, 57559, 57977, 59557, 59779, 59797, 59957, 59999, 75557, 75577, 75797, 75979, 75997, 77557, 77797, 77977, 77999, 79559, 79579, 79757, 79777
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2015

Keywords

Comments

A020467, A020468 and A020471 are subsequences.
Subsequence of A030096.

Crossrefs

Cf. similar sequences listed in A260827.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [5, 7, 9]];
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {5, 7, 9}] == {} &]

A261181 Primes that contain only the digits (0, 7, 9).

Original entry on oeis.org

7, 79, 97, 709, 797, 907, 977, 997, 7079, 7907, 9007, 9907, 70009, 70079, 70099, 70709, 70979, 70997, 70999, 77797, 77977, 77999, 79777, 79907, 79979, 79997, 79999, 90007, 90709, 90907, 90977, 90997, 97007, 97777, 99079, 99707, 99709, 99907, 700079
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020471 is a subsequence.

Crossrefs

Cf. Primes that contain only the digits (k,7,9): this sequence (k=0), A260893 (k=1), A261182 (k=2), A260382 (k=3), A261183 (k=4), A260831 (k=5), A261184 (k=6), A106110 (k=8).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [0, 7, 9]];
  • Mathematica
    Select[Prime[Range[6 10^4]], Complement[IntegerDigits[#], {0, 7, 9}] == {} &]
    Select[FromDigits/@Tuples[{0,7,9},6],PrimeQ] (* Harvey P. Dale, Aug 09 2024 *)

A260893 Primes having only {1, 7, 9} as digits.

Original entry on oeis.org

7, 11, 17, 19, 71, 79, 97, 179, 191, 197, 199, 719, 797, 911, 919, 971, 977, 991, 997, 1117, 1171, 1777, 1979, 1997, 1999, 7177, 7717, 7919, 9199, 9719, 9791, 11117, 11119, 11171, 11177, 11197, 11717, 11719, 11777, 11779, 11971, 17117, 17191, 17791, 17911
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020455, A020457 and A020471 are subsequences.
Subsequence of A030096.

Crossrefs

Cf. similar sequences listed in A260889.

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^4) | Set(Intseq(p)) subset [1, 7, 9]];
  • Mathematica
    Select[Prime[Range[3 10^3]], Complement[IntegerDigits[#], {1, 7, 9}] == {}&]

A261182 Primes having only {2, 7, 9} as digits.

Original entry on oeis.org

2, 7, 29, 79, 97, 227, 229, 277, 727, 797, 929, 977, 997, 2297, 2729, 2777, 2797, 2927, 2999, 7229, 7297, 7727, 7927, 9227, 9277, 9929, 22229, 22277, 22279, 22727, 22777, 27277, 27299, 27779, 27799, 27997, 29297, 29927, 72227, 72229, 72277, 72727, 72797
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020459, A020460 and A020471 are subsequences.

Crossrefs

Cf. similar sequences listed in A261181.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [2, 7, 9]];
    
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {2, 7, 9}] == {} &]
    Select[Flatten[Table[FromDigits/@Tuples[{2,7,9},n],{n,5}]],PrimeQ] (* Harvey P. Dale, Dec 17 2024 *)
  • Python
    from gmpy2 import is_prime
    from itertools import product
    A261182_list = [int(''.join(d)) for l in range(1,10) for d in product('279',repeat=l) if is_prime(int(''.join(d)))] # Chai Wah Wu, Aug 11 2015

A260382 Primes having only {3, 7, 9} as digits.

Original entry on oeis.org

3, 7, 37, 73, 79, 97, 337, 373, 379, 397, 733, 739, 773, 797, 937, 977, 997, 3373, 3733, 3739, 3779, 3793, 3797, 7333, 7393, 7793, 7933, 7937, 7993, 9337, 9377, 9397, 9733, 9739, 9973, 33377, 33739, 33773, 33797, 33937, 33997, 37337, 37339, 37379, 37397
Offset: 1

Views

Author

Vincenzo Librandi, Aug 01 2015

Keywords

Comments

A020463 and A020471 are subsequences.

Crossrefs

Cf. similar sequences listed in A260378.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [3,7,9]];
  • Mathematica
    Select[Prime[Range[5*10^3]], Complement[IntegerDigits[#], {3, 7, 9}]=={} &]

A261183 Primes having only {4, 7, 9} as digits.

Original entry on oeis.org

7, 47, 79, 97, 449, 479, 499, 797, 947, 977, 997, 4447, 4799, 4999, 7477, 7499, 7949, 9479, 9497, 9749, 9949, 44449, 44497, 44777, 44797, 47497, 47777, 47779, 47797, 47947, 47977, 49477, 49499, 49747, 49999, 74449, 74747, 74779, 74797, 77447, 77477, 77479
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020465, A020466 and A020471 are subsequences.

Crossrefs

Cf. similar sequences listed in A261181.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [4, 7, 9]];
  • Mathematica
    Select[Prime[Range[6 10^4]], Complement[IntegerDigits[#], {4, 7, 9}] == {} &]

A261184 Primes having only {6, 7, 9} as digits.

Original entry on oeis.org

7, 67, 79, 97, 677, 769, 797, 967, 977, 997, 6679, 6779, 6967, 6977, 6997, 7669, 7699, 9677, 9679, 9697, 9767, 9769, 9967, 66697, 66797, 66977, 67679, 67699, 67777, 67967, 67979, 69677, 69697, 69767, 69779, 69997, 76667, 76679, 76697, 76777, 77699, 77797
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020469 and A020471 are subsequences.

Crossrefs

Cf. similar sequences listed in A261181.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [6, 7, 9]];
  • Mathematica
    Select[Prime[Range[6 10^4]], Complement[IntegerDigits[#], {6, 7, 9}] == {} &]
    Select[Flatten[Table[FromDigits/@Tuples[{6,7,9},n],{n,5}]],PrimeQ] (* Harvey P. Dale, Jun 18 2021 *)

A036324 Composite numbers whose prime factors have no digits other than 7's and 9's.

Original entry on oeis.org

49, 343, 553, 679, 2401, 3871, 4753, 5579, 6241, 6839, 6979, 7663, 9409, 16807, 27097, 33271, 39053, 43687, 47873, 48853, 53641, 62963, 65863, 77183, 77309, 78763, 94769, 96709, 117649, 189679, 232897, 273371, 305809, 335111, 341971
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

All terms are a product of at least two terms of A020471. - David A. Corneth, Oct 09 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[342000],CompositeQ[#]&&SubsetQ[{7,9},Union[ Flatten[ IntegerDigits/@ FactorInteger[#][[All,1]]]]]&] (* Harvey P. Dale, Aug 01 2019 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A020471} (p/(p - 1)) - Sum_{p in A020471} 1/p - 1 = 0.0287747452... . - Amiram Eldar, May 22 2022

Extensions

Definition clarified by Harvey P. Dale, Aug 01 2019

A386358 Primes without {7, 9} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 23, 31, 41, 43, 53, 61, 83, 101, 103, 113, 131, 151, 163, 181, 211, 223, 233, 241, 251, 263, 281, 283, 311, 313, 331, 353, 383, 401, 421, 431, 433, 443, 461, 463, 503, 521, 523, 541, 563, 601, 613, 631, 641, 643, 653, 661, 683, 811, 821, 823
Offset: 1

Views

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038615 and A038617.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 4, 5, 6, 8]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 7] == 0 && DigitCount[#, 10, 9] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 4, 5, 6, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01234568"), 41))) # uses function/imports in A385776
    
Showing 1-10 of 14 results. Next