cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A020784 Decimal expansion of 1/sqrt(27).

Original entry on oeis.org

1, 9, 2, 4, 5, 0, 0, 8, 9, 7, 2, 9, 8, 7, 5, 2, 5, 4, 8, 3, 6, 3, 8, 2, 9, 2, 6, 8, 3, 3, 9, 8, 5, 8, 1, 8, 5, 4, 9, 2, 0, 0, 5, 8, 3, 7, 5, 6, 7, 0, 8, 9, 5, 8, 6, 7, 2, 8, 6, 7, 4, 4, 2, 1, 6, 1, 3, 2, 5, 8, 9, 0, 7, 6, 7, 6, 4, 4, 4, 4, 8, 5, 6, 4, 5, 7, 1, 7, 9, 8, 5, 2, 8, 5, 8, 3, 1, 7, 5
Offset: 0

Views

Author

Keywords

Comments

This is the minimum ripple factor for a third-order Chebyshev filter for which the generalized reflectionless topology needs no negative elements. - Matthew A. Morgan, Oct 18 2017

Examples

			0.1924500897298752548363829268339858185492005837567089586728674....
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.4.3 and 8.16, pp. 495, 527.

Crossrefs

Programs

Formula

Equals Sum_{k>=0} binomial(2*k,k) * k/16^k. - Amiram Eldar, Aug 02 2020
Equals sqrt(3)/9. - Stefano Spezia, Dec 24 2024
Equals 1/A010482 = A020760/3 = sqrt(A021031) = A073010/Pi = A212886/2. - Hugo Pfoertner, Dec 24 2024

A343612 Decimal expansion of P_{3,2}(2) = Sum 1/p^2 over primes == 2 (mod 3).

Original entry on oeis.org

3, 0, 7, 9, 2, 0, 7, 5, 8, 6, 0, 7, 7, 3, 6, 4, 3, 6, 8, 4, 2, 5, 0, 5, 0, 7, 5, 9, 4, 0, 9, 9, 8, 7, 2, 6, 5, 8, 1, 0, 3, 2, 6, 6, 5, 4, 7, 5, 5, 1, 4, 4, 8, 0, 0, 5, 2, 0, 1, 9, 2, 5, 2, 9, 9, 3, 7, 8, 5, 5, 4, 9, 0, 1, 1, 2, 5, 6, 3, 3, 4, 3, 4, 8, 9, 0, 2, 2, 5, 9, 2, 4, 9, 3, 7, 8, 6, 8, 8, 9, 5, 1, 9, 5, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.30792075860773643684250507594099872658103266547551448005201925299378554901...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085548 (PrimeZeta(2)), A021031 (1/27).
Cf. A175644 (same for primes 3k+1), A086032 (for primes 4k+1), A085991 (for primes 4k+3), A343613 - A343619 (P_{3,2}(s): same with 1/p^s, s = 3, ..., 9).

Programs

  • Mathematica
    digits = 105; nmax0 = 20; dnmax = 5;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1] ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta31[2, nmax = nmax0];
    PrimeZeta31[2, nmax += dnmax];
    While[Abs[PrimeZeta31[2, nmax] - PrimeZeta31[2, nmax-dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[2] = PrimeZetaP[2] - 1/3^2 - PrimeZeta31[2, nmax];
    RealDigits[PrimeZeta32[2], 10, digits][[1]] (* Jean-François Alcover, May 06 2021, after M. F. Hasler's PARI code *)
  • PARI
    s=0; forprimestep(p=2,1e8,3,s+=1./p^2);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    PrimeZeta32(s)={sumeulerrat(1/p^s)-1/3^s-suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2))}
    A343612_upto(N=100)={localprec(N+5); digits(PrimeZeta32(2)\.1^N)}

Formula

P_{3,2}(2) = P(2) - 1/3^2 - P_{3,1}(2) = A085548 - A000012 - A175644.

A343613 Decimal expansion of P_{3,2}(3) = Sum 1/p^3 over primes == 2 (mod 3).

Original entry on oeis.org

1, 3, 4, 1, 2, 5, 1, 7, 8, 9, 1, 5, 4, 6, 3, 5, 4, 0, 4, 2, 8, 5, 9, 9, 3, 2, 9, 9, 9, 9, 4, 3, 1, 1, 9, 8, 9, 9, 5, 8, 7, 9, 9, 1, 9, 7, 5, 2, 1, 6, 8, 3, 3, 7, 3, 7, 0, 5, 9, 9, 1, 0, 6, 1, 5, 3, 8, 5, 3, 3, 4, 9, 9, 5, 6, 0, 4, 7, 9, 3, 7, 6, 7, 1, 5, 2, 8, 6, 5, 3, 7, 4, 0, 4, 0, 3, 4, 4, 4, 3, 3, 6, 7, 8, 6
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.134125178915463540428599329999431198995879919752168337370599106153853349956...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085541 (PrimeZeta(3)), A021031 (1/27).
Cf. A175645 (same for p==1 (mod 3)), A086033 (for primes 4k+1), A085992 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^3);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    
  • PARI
    A343613_upto(N=100)={localprec(N+5); digits((PrimeZeta32(3)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32.

Formula

P_{3,2}(3) = P(3) - 1/3^3 - P_{3,1}(3) = A085541 - A021031 - A175645.

A021733 Decimal expansion of 1/729.

Original entry on oeis.org

0, 0, 1, 3, 7, 1, 7, 4, 2, 1, 1, 2, 4, 8, 2, 8, 5, 3, 2, 2, 3, 5, 9, 3, 9, 6, 4, 3, 3, 4, 7, 0, 5, 0, 7, 5, 4, 4, 5, 8, 1, 6, 1, 8, 6, 5, 5, 6, 9, 2, 7, 2, 9, 7, 6, 6, 8, 0, 3, 8, 4, 0, 8, 7, 7, 9, 1, 4, 9, 5, 1, 9, 8, 9, 0, 2, 6, 0, 6, 3, 1, 0, 0, 1, 3, 7, 1, 7, 4, 2, 1, 1, 2, 4, 8, 2, 8, 5, 3
Offset: 0

Views

Author

Keywords

Comments

729 = 3^6 = 9^3 = 27^2.
Period is 81 = 9^2 (see example for all 81 digits of the repeating part).
Repeating part in the form of 9 X 9 square table:
1, 3, 7, 1, 7, 4, 2, 1, 1,
2, 4, 8, 2, 8, 5, 3, 2, 2,
3, 5, 9, 3, 9, 6, 4, 3, 3,
4, 7, 0, 5, 0, 7, 5, 4, 4,
5, 8, 1, 6, 1, 8, 6, 5, 5,
6, 9, 2, 7, 2, 9, 7, 6, 6,
8, 0, 3, 8, 4, 0, 8, 7, 7,
9, 1, 4, 9, 5, 1, 9, 8, 9,
0, 2, 6, 0, 6, 3, 1, 0, 0.
Note that each column consists of 9 consecutive (cyclically repeated) digits out of 10. The missing digits in columns from left to right are {7, 6, 5, 4, 3, 2, 0, 9, 8}, which form also a cycle of 9 out of 10 consecutive digits in reverse order, all digits except 1. - Alexander Adamchuk, Dec 28 2013

Examples

			1/729 = 0.00137174211248285322359396433470507544581618655692729766\
803840877914951989026063100 (period 81). - _Alexander Adamchuk_, Dec 28 2013
		

Crossrefs

Cf. A068542 (period of the fraction 1/3^n).
Cf. A010701 (1/3), A000012 (1/9), A021031 (1/27), A021085 (1/81).

Programs

Formula

Equals Sum_{k>=1} (k*(k+1)/2)/10^(k+2). - Davide Rotondo, Jun 11 2025

A214395 Decimal expansion of 16/27.

Original entry on oeis.org

5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5, 9, 2, 5
Offset: 0

Views

Author

Keywords

Comments

Betz's constant (or Betz's coefficient): maximum efficiency of a turbine. The constant is unfortunately named; Lanchester discovered it before Betz, and Lanchester cites Froude (though it seems that Lanchester was the first to write it explicitly). Joukowsky (also spelled Zhukovsky) and Munk published discoveries the same year as Betz.

Examples

			0.5925925925925925925925925925925925925925925925925925925925925925925...
		

References

  • Albert Betz, "Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren", Zeitschrift für das gesamte Turbinenwesen 26 (1920), pp. 307-309.
  • N. E. Joukowsky (Николай Егорович Жуковский), Windmill of the NEJ type (in Russian), Transactions of the Central Institute for Aero-Hydrodynamics of Moscow (1920). Appeared in Collected Papers Vol VI, The Joukowsky Institute for AeroHydrodynamics, Moscow, Russia (1937); VI: 405-409 (in Russian).
  • F. W. Lanchester, A contribution to the theory of propulsion and the screw propeller, Transactions of the Institution of Naval Architects 57 (1915), pp. 98-116. (See pp. 114-115.)

Crossrefs

Programs

  • Mathematica
    RealDigits[16/27,10,120][[1]] (* or *) PadRight[{},120,{5,9,2}] (* Harvey P. Dale, Dec 04 2012 *)
  • PARI
    16/27.

Formula

Equals 16 * A021031. - Felix Fröhlich, Jun 17 2017
Showing 1-5 of 5 results.