cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002708 a(n) = Fibonacci(n) mod n.

Original entry on oeis.org

0, 1, 2, 3, 0, 2, 6, 5, 7, 5, 1, 0, 12, 13, 10, 11, 16, 10, 1, 5, 5, 1, 22, 0, 0, 25, 20, 11, 1, 20, 1, 5, 13, 33, 30, 0, 36, 1, 37, 35, 1, 34, 42, 25, 20, 45, 46, 0, 36, 25, 32, 23, 52, 8, 5, 21, 40, 1, 1, 0, 1, 1, 43, 59, 60, 52, 66, 65, 44, 15, 1, 0, 72, 73, 50, 3, 2, 44, 1, 5, 7, 1, 82, 24
Offset: 1

Views

Author

John C. Hallyburton, Jr. (hallyb(AT)evms.ENET.dec.com)

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 891.

Crossrefs

Cf. A002726, A002752, A023172 (indices of 0's), A023173 (indices of 1's), A023174-A023182.
Cf. A263101.
Main diagonal of A161553.

Programs

  • Magma
    [Fibonacci(n) mod n : n in [1..120]]; // Vincenzo Librandi, Nov 19 2015
    
  • Maple
    with(combinat): [ seq( fibonacci(n) mod n, n=1..80) ];
    # second Maple program:
    a:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:= r.M mod n fi;
             if p=0 then break fi; M:= M.M mod n
          od; r[1, 2]
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 26 2016
  • Mathematica
    Table[Mod[Fibonacci[n], n], {n, 1, 100}] (* Stefan Steinerberger, Apr 18 2006 *)
  • PARI
    a(n) = fibonacci(n) % n; \\ Michel Marcus, May 11 2016
  • Python
    A002708_list, a, b, = [], 1, 1
    for n in range(1,10**4+1):
        A002708_list.append(a%n)
        a, b = b, a+b # Chai Wah Wu, Nov 26 2015
    

Extensions

More terms from Stefan Steinerberger, Apr 18 2006

A132634 a(n) = Fibonacci(n) mod n^2.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 0, 64, 181, 160, 219, 152, 316, 210, 365, 362, 287, 91, 288, 25, 389, 317, 291, 378, 440, 869, 261, 574, 339, 765, 432, 443, 533, 1285, 1355, 1641, 1504, 85, 1741, 20, 551, 1832, 576, 1457, 1525, 389, 803, 2066, 332, 1820, 245
Offset: 1

Views

Author

Hieronymus Fischer, Aug 24 2007

Keywords

Comments

a(n)=0 for n=1 and n=12 only (conjecture).

Examples

			a(13) = 64, since Fibonacci(13) = 233 == 64 (mod 13^2).
		

Crossrefs

Programs

  • Maple
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, n, n^2)[1, 2]:
    seq(a(n), n=1..80);
  • Mathematica
    Table[Mod[Fibonacci[n],n^2],{n,200}] (* Vladimir Joseph Stephan Orlovsky, Nov 28 2010 *)

A121343 a(n) = Fibonacci(n) mod n(n+1)/2.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 13, 21, 34, 0, 23, 66, 51, 62, 10, 35, 67, 19, 1, 45, 89, 1, 229, 168, 275, 298, 236, 319, 59, 155, 125, 309, 376, 407, 485, 630, 628, 419, 466, 615, 370, 517, 343, 663, 830, 988, 1033, 168, 624, 700, 746, 1167, 158, 872, 1105, 609, 610, 59, 1181, 0, 1, 125
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2006

Keywords

Examples

			a(11)=23 since Fib(11)=89==23(mod (11*12/2)).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local r, M, p, m; r, M, p, m:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n, n*(n+1)/2;
          do if irem(p, 2, 'p')=1 then r:= r.M mod m fi;
             if p=0 then break fi; M:= M.M mod m
          od; r[1, 2]
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 26 2016
  • Mathematica
    f[n_] := If[n == 0, 0, Mod[Fibonacci@n, n(n + 1)/2]]; f /@ Range[0, 62] (* Robert G. Wilson v, Aug 31 2006 *)
    Join[{0},Mod[First[#],Last[#]]&/@With[{nn=70},Thread[{Fibonacci[ Range[ nn]], Accumulate[Range[nn]]}]]] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    a(n)=lift(fibmod(n,n*(n+1)/2)) \\ Charles R Greathouse IV, Jun 20 2017

Formula

A000045(n) modulo A000217(n).

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar

A132636 a(n) = Fibonacci(n) mod n^3.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 1685, 7063, 4323, 4896, 12525, 15937, 19271, 10483, 2060, 22040, 5674, 15621, 2752, 3807, 9340, 432, 46989, 19305, 11932, 62155, 31899, 12088, 22273, 3677, 32420
Offset: 1

Views

Author

Hieronymus Fischer, Aug 24 2007

Keywords

Comments

a(1) = 0; for n=2 to 20, a(n) = A000045(n); otherwise for instance, see example. - Michel Marcus, Jul 15 2013

Examples

			a(21) = 1685, since Fibonacci(21) = 10946 == 1685 (mod 21^3).
		

Crossrefs

Programs

Formula

a(n) = A000045(n) mod A000578(n).

A100992 Indices k of Fibonacci numbers F(k) (A000045) that are divisible by k+1.

Original entry on oeis.org

10, 18, 28, 30, 40, 58, 60, 70, 78, 88, 100, 108, 130, 138, 148, 150, 178, 180, 190, 198, 210, 228, 238, 240, 250, 268, 270, 280, 310, 330, 348, 358, 378, 388, 400, 408, 418, 420, 430, 438, 441, 448, 460, 478, 490, 498, 508, 520, 540, 568, 570, 598, 600, 618
Offset: 1

Views

Author

Ron Knott, Nov 25 2004

Keywords

Comments

When k+1 is prime, it is in A045468; when k+1 is composite (such as 442), it is in A069106. - T. D. Noe, Dec 13 2004

Examples

			18 is a term because F(18) = 2584 = 2*2*2*17*19 is divisible by 19, one more than its index number 18.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 620], Mod[ Fibonacci[ # ], # + 1] == 0 &] (* Robert G. Wilson v, Nov 26 2004 *)

Extensions

More terms from Robert G. Wilson v, Nov 26 2004

A100993 Indices k of Fibonacci numbers F(k) (A000045) that are divisible by k-1.

Original entry on oeis.org

2, 3, 4, 8, 14, 18, 24, 38, 44, 48, 54, 68, 74, 84, 98, 104, 108, 114, 128, 138, 158, 164, 168, 174, 194, 198, 224, 228, 234, 258, 264, 278, 284, 294, 308, 314, 318, 324, 338, 348, 354, 368, 374, 378, 384, 398, 434, 444, 458, 464, 468, 488, 504, 524, 548, 558
Offset: 1

Views

Author

Ron Knott, Nov 25 2004

Keywords

Comments

When k-1 is prime, it is in A003631; when k-1 is composite (such as 323), it is in A069107. - T. D. Noe, Dec 13 2004

Examples

			14 is a term because F(14) = 377 = 13*29 is divisible by 13, one less than its index number 14.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 500], Mod[ Fibonacci[ # ], # - 1] == 0 &] (* Robert G. Wilson v, Nov 26 2004 *)

Formula

a(n) = A069104(n) + 1. - T. D. Noe, Dec 13 2004

A128288 a(n) = A023163(n)/3 for n > 1.

Original entry on oeis.org

3, 13, 37, 43, 53, 67, 83, 107, 157, 163, 173, 197, 227, 277, 283, 293, 307, 317, 347, 373, 397, 443, 467, 523, 547, 557, 563, 587, 613, 643, 653, 677, 683, 733, 757, 773, 787, 797, 827, 853, 877, 883, 907, 947, 997, 1013, 1093, 1117, 1123, 1163, 1187, 1213
Offset: 2

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n > 1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n). Almost all terms of {a(n)} are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} (primes congruent to {2, 3} mod 5) that are also the primes p that divide Fibonacci(p+1). The first composite term is a(74) = 1853 = 17*109. The second composite term is 9701 = 89*109. The third composite term is 10877 = 73*149 belong to A069107(n) Composite n such that n divides F(n+1) where F(k) are the Fibonacci numbers. Composite terms in {a(n)} are listed in A128289 = {1853, 9701, 10877, 17261, ...}.

Examples

			A023163 begins {1, 9, 39, 111, 129, 159, 201, 249, 321, 471, 489, 519, ...}.
Thus a(2) = A023163(2)/3 = 9/3 = 3, a(3) = A023163(3)/3 = 39/3 = 13.
		

Crossrefs

Cf. A002708, A023172, A023173, A023162, A023163 (numbers k such that Fibonacci(k) == -2 (mod k)).
Cf. A003631, A069107, A128289 (composite terms in A128288).

Formula

a(n) = A023163(n)/3 for n > 1.

A319040 Numbers k > 1 such that Pell(k) == 1 (mod k).

Original entry on oeis.org

7, 17, 23, 31, 35, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 169, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 385, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 08 2018

Keywords

Comments

It appears that most of the terms of this sequence are primes. The composite terms are 35, 169, 385, 899, 961, 1121, ... (A319042).
The primes in the sequence give A001132 (primes == +-1 (mod 8)), since for primes p we have Pell(p) == (2/p) (mod p) where (2/p) is the Legendre symbol. - Jianing Song, Sep 10 2018

Examples

			k = 7 is in the sequence since Pell(7) = 169 = 7 * 24 + 1 == 1 (mod 7).
k = 11 is not in the sequence: Pell(11) = 5741 = 11 * 522 - 1 !== 1 (mod 11).
k = 35 is in the sequence: Pell(35) = 8822750406821 = 35 * 252078583052 + 1 == 1 (mod 35).
		

Crossrefs

Cf. A000129 (Pell numbers), A001132, A023173, A319041, A319042, A319043.

Programs

  • Maple
    isA319040 := k -> simplify(2^(k-1)*hypergeom([1-k/2,(1-k)/2],[1-k],-1)) mod k = 1: A319040List := b -> select(isA319040, [$1..b]):
    A319040List(600); # Peter Luschny, Sep 09 2018
  • Mathematica
    Select[Range[500], Mod[Fibonacci[#, 2], #] == 1 &] (* Alonso del Arte, Sep 08 2018 *)

A128289 Composite terms in A128288(n) = A023163(n)/3 for n>1.

Original entry on oeis.org

1853, 9701, 10877, 17261, 23323, 27403, 75077, 80189, 113573, 120581, 161027, 162133, 163059, 196877, 213749, 291941, 361397, 400987, 427549, 482677, 635627, 667589, 941291, 1030373, 1033997, 1140701, 1196061, 1256293, 1751747, 1816363, 1842581, 2288453, 2662277
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n>1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n).
Almost all terms of A128288 are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} Primes congruent to {2, 3} mod 5; that are also the primes p that divide Fibonacci(p+1).
a(3) = 10877 = 73*149 belongs to A069107 Composite n such that n divides Fibonacci(n+1).
a(3) = 10877 and a(4) = 17261 belong to A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Examples

			a(1) = A128288(74) = 1853 = 17*109.
a(2) = 9701 = 89*109.
a(3) = 10877 = 73*149.
a(4) = 17261 = 41*421.
a(5) = 23323 = 83*281.
		

Crossrefs

Cf. A128288, A002708, A023172, A023173, A023162, A023163 = numbers n such that Fib(n) == -2 (mod n). Cf. A003631, A069107, A094413, A094395 = Odd composite n such that n divides Fibonacci(n) + 1.

Programs

  • Mathematica
    Do[ f = Mod[ Fibonacci[3n], 3n ]; If[ !PrimeQ[n] && f == 3n-2, Print[ {n, FactorInteger[n]} ]], {n,1,25000} ]

Extensions

Two more terms from R. J. Mathar, Oct 08 2007
a(9)-a(33) from Amiram Eldar, Apr 07 2019

A023177 Numbers k such that Fibonacci(k) == 8 (mod k).

Original entry on oeis.org

1, 3, 6, 54, 174, 246, 366, 534, 606, 654, 894, 966, 1086, 1374, 1446, 1614, 1686, 2046, 2094, 2214, 2334, 2406, 2454, 2526, 2694, 2766, 3054, 3126, 3246, 3414, 3606, 3846, 3966, 4206, 4254, 4566, 4614, 4854, 4926, 4974, 5286, 5382, 5406, 5574, 5646, 6054
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    filter:= n -> combinat:-fibonacci(n) - 8 mod n = 0:
    select(filter, [$1..10^4]); # Robert Israel, Mar 05 2025
  • Mathematica
    Select[Range[6100], Mod[Fibonacci[#] - 8, #]==0&]  (* Harvey P. Dale, Sep 21 2021 *)

Formula

A002708(a(n)) = 8 (for n >= 4). - Robert Israel, Mar 05 2025

Extensions

Definition clarified by N. J. A. Sloane, Sep 21 2021
Showing 1-10 of 12 results. Next