A136366
Numbers k such that A024530(k) is prime.
Original entry on oeis.org
3, 4, 5, 10, 21, 31, 55, 77, 121, 135, 148, 192, 425, 570, 612, 649, 1293, 2326, 3646
Offset: 1
Cf.
A024530 (numerator of Sum_{k=1..n} (-1)^k / prime(k)).
-
f=0; Do[ p=Prime[n]; f=f + (-1)^(n+1)*1/p; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 150} ]
A078437
Decimal expansion of sum of alternating series of reciprocals of primes.
Original entry on oeis.org
2, 6, 9, 6, 0, 6, 3, 5, 1, 9, 7, 1, 6, 7
Offset: 0
1/2 - 1/3 + 1/5 - 1/7 + 1/11 - 1/13 + ... = 0.26960635197167...
- S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98.
Cf.
A024530 (numerator of partial sums),
A002110 (denominators: primorials).
-
s = NSum[ p=Prime[k//Round]; (-1)^k/p, {k, 1, Infinity}, WorkingPrecision -> 30, NSumTerms -> 5*10^7, Method -> "AlternatingSigns"]; RealDigits[s, 10, 14] // First (* Jean-François Alcover, Sep 02 2015 *)
-
L=2^N=1; h=List([1/4, 1/6 + S=.5-1/o=3]); forprime(p=o+1,oo, S+=(-1)^L/p; L--|| print([L=2^N++, p, S, listput(h, S+(3/p-1/o)/4)]); o=p) \\ in PARI version > 2.13 listput() may not return the element so one must add +h[#h]
A(x,n=#x)=(x[n]*x[n-2]-x[n-1]^2)/(x[n]+x[n-2]-2*x[n-1]) \\ This is Aitken's Delta-square extrapolation for the last 3 elements of the list x. One can check that the extrapolation is useful for the sequence of raw partial sums (f(2^k)), but not for the smooth/average sequence (h(2^k)). - M. F. Hasler, Feb 20 2024
Values of a(11)-a(14) = 7,1,6,7 from
Robert Price, Sep 13 2011
A136370
Numerator of 1 - Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
Original entry on oeis.org
3, 31, 739, 37111, 4446331, 756766039, 217803584371, 78887714418031, 41637516941042299, 35066922176061410359, 33657455280704707522099, 46117280789485930425170431, 77468081652660425646977758411, 143331051198625503752852285686039
Offset: 1
The first few fractions are 3/4, 31/36, 739/900, 37111/44100, 4446331/5336100, 756766039/901800900, ... = A136370/A061742. - _Petros Hadjicostas_, May 14 2020
-
Table[Numerator[1 - Sum[(-1)^(k+1)/Prime[k]^2, {k, 1, n}]], {n, 1, 20}]
-
a(n) = numerator(1 - sum(k=1, n, (-1)^(k+1)/prime(k)^2)); \\ Michel Marcus, May 14 2020
-
from sympy import prime
from fractions import Fraction
from itertools import accumulate, count, islice
def A136370gen(): yield from map(lambda x: (1-x).numerator, accumulate(Fraction((-1)**(k+1), prime(k)**2) for k in count(1)))
print(list(islice(A136370gen(), 14))) # Michael S. Branicky, Jun 26 2022
A136368
Numerator of Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
Original entry on oeis.org
1, 5, 161, 6989, 889769, 145034861, 42816875729, 15196271678069, 8132911703794601, 6790008314246422541, 6567054920481119894801, 8950073675937467308565669, 15100141203716305943432625689
Offset: 1
-
[Numerator(&+[(-1)^(k+1)/NthPrime(k)^2:k in [1..n]]): n in [1..13]]; // Marius A. Burtea, Aug 26 2019
-
Table[Numerator[Sum[(-1)^(k+1)/Prime[k]^2, {k, 1, n}]], {n, 1, 20}]
A136369
Numbers k such that A136368(k) is prime.
Original entry on oeis.org
2, 5, 6, 8, 18, 20, 98, 1863
Offset: 1
Cf.
A024530 (numerator of Sum_{k=1..n} (-1)^k / prime(k)).
Cf.
A136368 (numerator of Sum_{k=1..n} (-1)^(k+1)/prime(k)^2).
-
f=0; Do[ p=Prime[n]; f=f + (-1)^(n+1)*1/p^2; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 100} ]
A136371
Numbers k such that A136370(k) is prime.
Original entry on oeis.org
1, 2, 3, 5, 46, 227, 232, 336, 360, 3919
Offset: 1
Cf.
A024530: numerator of Sum_{k=1..n} (-1)^k/prime(k).
Cf.
A136368: numerator of Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
Cf.
A136370: numerator of 1 - Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
-
f=1; Do[ p=Prime[n]; f=f - (-1)^(n+1)*1/p^2; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 100} ]
-
# uses A136370gen() and imports from A136370
from sympy import isprime
def agen(): yield from (k for k, ak in enumerate(A136370gen(), 1) if isprime(ak))
print(list(islice(agen(), 5))) # Michael S. Branicky, Jun 26 2022
A136367
Numbers k such that A024529(k+1) is prime.
Original entry on oeis.org
2, 3, 4, 5, 11, 59, 397, 613, 906, 1560, 2162, 2915, 5211
Offset: 1
Cf.
A024529: numerator of 1 + Sum_{k=1..n-1} (-1)^k/prime(k).
-
f=1; Do[ p=Prime[n]; f=f + (-1)^n*1/p; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 60} ]
A140123
Denominator of Sum_{k=1..n} (-1)^k / semiprime(k).
Original entry on oeis.org
4, 12, 36, 180, 1260, 252, 252, 2772, 69300, 900900, 900900, 15315300, 15315300, 290990700, 290990700, 6692786100, 46849502700, 46849502700, 46849502700, 46849502700, 1358635578300, 42117702927300, 42117702927300, 42117702927300
Offset: 1
The first 10 values of A140122(n)/a(n) = -1/4, -1/12, -7/36, -17/180, -209/1260, -25/252, -37/252, -281/2772, -9797/69300, -92711/900900. The 10th term of the sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26) = -92711/900900 hence a(10) = 900900. The 20th term of the alternating sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26)-(1/33)+(1/34)-(1/35)+(1/38)-(1/39)+(1/46)-(1/49)+(1/51)-(1/55)+(1/57) = -5218865543/46849502700, hence a(20) = 46849502700.
-
A001358 := proc(n) local a; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A140123 := proc(n) local k ; denom(add ( (-1)^k/A001358(k),k=1..n)) ; end: seq(A140123(n),n=1..30) ; # R. J. Mathar, May 13 2008
A140122
Negative of numerator of Sum_{k=1..n} (-1)^k / semiprime(k).
Original entry on oeis.org
1, 1, 7, 17, 209, 25, 37, 281, 9797, 92711, 120011, 1589737, 2027317, 30861373, 38322673, 735926129, 6107595203, 5188977503, 6040786643, 5218865543, 174771852097, 4738609625857, 5386574286277, 4776172794577, 197777244862999
Offset: 1
The first 10 values of a(n)/A140123(n) = -1/4, -1/12, -7/36, -17/180, -209/1260, -25/252, -37/252, -281/2772, -9797/69300, -92711/900900. The 10th term of the sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26) = -92711/900900 hence a(10) = -(-92711) = 92711. The 20th term of the alternating sum is (-1/4)+(1/6)-(1/9)+(1/10)-(1/14)+(1/15)-(1/21)+(1/22)-(1/25)+(1/26)-(1/33)+(1/34)-(1/35)+(1/38)-(1/39)+(1/46)-(1/49)+(1/51)-(1/55)+(1/57) = -5218865543/46849502700, hence a(20) = 5218865543.
-
A001358 := proc(n) local a; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A140122 := proc(n) local k ; numer(-add ( (-1)^k/A001358(k),k=1..n)) ; end: seq(A140122(n),n=1..30) ; # R. J. Mathar, May 13 2008
A332399
Minimum positive value of p_1*...*p_n*(s_1/p_1 + ... + s_n/p_n), where each s_i equals 1 or -1 and p_i is the i-th prime number.
Original entry on oeis.org
1, 1, 1, 23, 43, 251, 263, 21013, 1407079, 4919311, 818778281, 2402234557, 379757743297, 3325743954311, 54237719914087, 903944329576111, 46919460458733911, 367421942920402841, 17148430651130576323, 1236225057834436760243, 4190310920096832376289, 535482916756698482410061
Offset: 1
(2*3*5*7)*(1/2 - 1/3 - 1/5 + 1/7) = (210)*(23/210) = 23, so a(4) = 23.
-
a[n_] := Block[{p = Prime@ Range@ n}, Min@ Abs[{1/p}.Transpose@ Tuples[{-1, 1}, n]] Times @@ p]; Array[a, 16] (* Giovanni Resta, Feb 11 2020 *)
Showing 1-10 of 10 results.
Comments