cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A007294 Number of partitions of n into nonzero triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 4, 4, 6, 7, 7, 10, 11, 11, 15, 17, 17, 22, 24, 25, 32, 35, 36, 44, 48, 50, 60, 66, 68, 81, 89, 92, 107, 117, 121, 141, 153, 159, 181, 197, 205, 233, 252, 262, 295, 320, 332, 372, 401, 417, 465, 501, 520, 575, 619, 645, 710, 763
Offset: 0

Views

Author

Keywords

Comments

Also number of decreasing integer sequences l(1) >= l(2) >= l(3) >= .. 0 such that sum('i*l(i)','i'=1..infinity)=n.
a(n) is also the number of partitions of n such that #{parts equal to i} >= #{parts equal to j} if i <= j.
Also the number of partitions of n (necessarily into distinct parts) where the part sizes are monotonically decreasing (including the last part, which is the difference between the last part and a "part" of size 0). These partitions are the conjugates of the partitions with number of parts of size i increasing. - Franklin T. Adams-Watters, Apr 08 2008
Also partitions with condition as in A179255, and additionally, if more than one part, first difference >= first part: for example, a(10)=7 as there are 7 such partitions of 10: 1+2+3+4 = 1+2+7 = 1+3+6 = 1+9 = 2+8 = 3+7 = 10. - Joerg Arndt, Mar 22 2011
Number of members of A181818 with a bigomega value of n (cf. A001222). - Matthew Vandermast, May 19 2012

Examples

			6 = 3+3 = 3+1+1+1 = 1+1+1+1+1+1 so a(6) = 4.
a(7)=4: Four sequences as above are (7,0,..), (5,1,0,..), (3,2,0,..),(2,1,1,0,..). They correspond to the partitions 1^7, 2 1^5, 2^2 1^3, 3 2 1^2 of seven or in the main description to the partitions 1^7, 3 1^4, 3^2 1, 6 1.
From _Gus Wiseman_, May 03 2019: (Start)
The a(1) = 1 through a(9) = 6 partitions using nonzero triangular numbers are the following. The Heinz numbers of these partitions are given by A325363.
  1   11   3     31     311     6        61        611        63
           111   1111   11111   33       331       3311       333
                                3111     31111     311111     6111
                                111111   1111111   11111111   33111
                                                              3111111
                                                              111111111
The a(1) = 1 through a(10) = 7 partitions with weakly decreasing multiplicities are the following. Equivalent to Matthew Vandermast's comment, the Heinz numbers of these partitions are given by A025487 (products of primorial numbers).
  1  11  21   211   2111   321     3211     32111     32211      4321
         111  1111  11111  2211    22111    221111    222111     322111
                           21111   211111   2111111   321111     2221111
                           111111  1111111  11111111  2211111    3211111
                                                      21111111   22111111
                                                      111111111  211111111
                                                                 1111111111
The a(1) = 1 through a(11) = 7 partitions with weakly increasing differences (where the last part is taken to be zero) are the following. The Heinz numbers of these partitions are given by A325362 (A = 10, B = 11).
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)     (B)
            (21)  (31)  (41)  (42)   (52)   (62)   (63)   (73)    (83)
                              (51)   (61)   (71)   (72)   (82)    (92)
                              (321)  (421)  (521)  (81)   (91)    (A1)
                                                   (531)  (631)   (731)
                                                   (621)  (721)   (821)
                                                          (4321)  (5321)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A102462.
Row sums of array A176723 and triangle A176724. - Wolfdieter Lang, Jul 19 2010
Cf. A179255 (condition only on differences), A179269 (parts strictly increasing instead of nondecreasing). - Joerg Arndt, Mar 22 2011
Row sums of A319797.

Programs

  • Haskell
    a007294 = p $ tail a000217_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 28 2013
    
  • Maple
    b:= proc(n,i) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=0 then 0
        else b(n, i-1) +b(n-i*(i+1)/2, i)
          fi
        end:
    a:= n-> b(n, floor(sqrt(2*n))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 22 2011
    isNondecrP :=proc(L) slp := DIFF(DIFF(L)) ; min(op(%)) >= 0 ; end proc:
    A007294 := proc(n) local a, p; a := 0 ; if n = 0 then return 1 ; end if; for p in combinat[partition](n) do if nops(p) = nops(convert(p, set)) then if isNondecrP(p) then if nops(p) =1 then a := a+1 ; elif op(2, p) >= 2*op(1, p) then a := a+1; end if; end if; end if; end do; a ; end proc:
    seq(A007294(n), n=0..30) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    CoefficientList[ Series[ 1/Product[1 - x^(i(i + 1)/2), {i, 1, 50}], {x, 0, 70}], x]
    (* also *)
    t = Table[n (n + 1)/2, {n, 1, 200}] ; p[n_] := IntegerPartitions[n, All, t]; Table[p[n], {n, 0, 12}] (*shows partitions*)
    a[n_] := Length@p@n; a /@Range[0, 80]
    (* Clark Kimberling, Mar 09 2014 *)
    b[n_, i_] := b[n, i] = Which[n < 0, 0, n == 0, 1, i == 0, 0, True, b[n, i-1]+b[n-i*(i+1)/2, i]]; a[n_] := b[n, Floor[Sqrt[2*n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Differences[Append[#,0]]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
    nmax = 58; t = Table[PolygonalNumber[n], {n, nmax}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[t, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    N=66; Vec(1/prod(k=1,N,1-x^(k*(k+1)\2))+O(x^N)) \\ Joerg Arndt, Apr 14 2013
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    @lru_cache(maxsize=None)
    def A007294(n):
        @lru_cache(maxsize=None)
        def a(n): return is_square((n<<3)+1)
        @lru_cache(maxsize=None)
        def c(n): return sum(d for d in divisors(n,generator=True) if a(d))
        return (c(n)+sum(c(k)*A007294(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024
  • Sage
    def A007294(n):
        has_nondecreasing_diffs = lambda x: min(differences(x, 2)) >= 0
        special = lambda x: (x[1]-x[0]) >= x[0]
        allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_nondecreasing_diffs(x))
        return len([1 for x in Partitions(n, max_slope=-1) if allowed(x[::-1])]) # D. S. McNeil, Jan 06 2011
    

Formula

G.f.: 1/Product_{k>=2} (1-z^binomial(k, 2)).
For n>0: a(n) = b(n, 1) where b(n, k) = if n>k*(k+1)/2 then b(n-k*(k+1)/2, k) + b(n, k+1) else (if n=k*(k+1)/2 then 1 else 0). - Reinhard Zumkeller, Aug 26 2003
For n>0, a(n) is Euler Transform of [1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,...], i.e A010054, n>0. - Benedict W. J. Irwin, Jul 29 2016
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2) * Zeta(3/2) / (2^(7/2) * sqrt(3) * Pi * n^(3/2)) [Brigham 1950 (exponential part), Almkvist 2006]. - Vaclav Kotesovec, Dec 31 2016
G.f.: Sum_{i>=0} x^(i*(i+1)/2) / Product_{j=1..i} (1 - x^(j*(j+1)/2)). - Ilya Gutkovskiy, May 07 2017

Extensions

Additional comments from Roland Bacher, Jun 17 2001

A052335 Number of partitions of n into at most 1 copy of 1, 2 copies of 2, 3 copies of 3, ... .

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 22, 28, 36, 46, 58, 73, 91, 114, 141, 173, 213, 261, 318, 387, 469, 567, 683, 821, 984, 1176, 1403, 1671, 1984, 2351, 2781, 3284, 3869, 4550, 5343, 6264, 7330, 8565, 9993, 11642, 13543, 15733, 18252, 21148, 24471, 28282, 32646, 37640, 43348, 49867, 57302, 65776, 75426, 86405, 98882
Offset: 0

Views

Author

Christian G. Bower, Dec 19 1999

Keywords

Comments

Also number of partitions into non-pronic numbers (cannot be written as i*(i+1)).
Convolution of A024940 and A225044. - Vaclav Kotesovec, Jan 02 2017

Examples

			a(5)=4 because we have [5], [4,1], [3,2] and [2,2,1] ([3,1,1], [2,1,1,1] and [1,1,1,1,1] do not qualify).
		

Crossrefs

Programs

  • Maple
    g:=product((1-x^(j*(j+1)))/(1-x^j),j=1..53): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..49); # Emeric Deutsch, Mar 04 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(issqr(4*d+1), 0, d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    CoefficientList[Series[Product[Sum[x^(i j ), {i, 0, j}], {j, 1, 49}], {x, 0, 49}], x]
    (* Second program: *)
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[IntegerQ @ Sqrt[4*d+1], 0, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 30 2017, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N); Vec( prod(n=1,N, sum(k=0,n,q^(k*n)) ) ) \\ Joerg Arndt, Apr 01 2014

Formula

G.f.: Product_{i>=1} (1-x^(i*(i+1)))/(1-x^i).
G.f.: (1+x) * (1+x^2+x^4) * (1+x^3+x^6+x^9) * (1+x^4+x^8+x^12+x^16) * ... (g.f. above, expanded). - Joerg Arndt, Apr 01 2014
G.f.: Product_{n>=1} (1 - q^(n*(n+1))) / Product_{n>=1} (1 - q^n). - Joerg Arndt, Apr 01 2014
a(n) = p(n,1,1) with p(n,t,k) = if t<0 then 0 else if k<=n then p(n-k,t-1,k)+p(n,k+1,k+1) else 0^n. - Reinhard Zumkeller, Jan 20 2010
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) / sqrt(2*n). - Vaclav Kotesovec, Jan 01 2017

A053614 Numbers that are not the sum of distinct triangular numbers.

Original entry on oeis.org

2, 5, 8, 12, 23, 33
Offset: 1

Views

Author

Jud McCranie, Mar 19 2000

Keywords

Comments

The Mathematica program first computes A024940, the number of partitions of n into distinct triangular numbers. Then it finds those n having zero such partitions. It appears that A024940 grows exponentially, which would preclude additional terms in this sequence. - T. D. Noe, Jul 24 2006, Jan 05 2009

Examples

			a(2) = 5: the 7 partitions of 5 are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. Among those the distinct ones are 5, 4+1, 3+2. None contains all distinct triangular numbers.
12 is a term as it is not a sum of 1, 3, 6 or 10 taken at most once.
		

References

  • Joe Roberts, Lure of the Integers, The Mathematical Association of America, 1992, page 184, entry 33.
  • David Wells in "The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, page 94, states that "33 is the largest number that is not the sum of distinct triangular numbers".

Crossrefs

Cf. A025524 (number of numbers not the sum of distinct n-th-order polygonal numbers)
Cf. A007419 (largest number not the sum of distinct n-th-order polygonal numbers)
Cf. A001422, A121405 (corresponding sequences for square and pentagonal numbers)

Programs

  • Mathematica
    nn=100; t=Rest[CoefficientList[Series[Product[(1+x^(k*(k+1)/2)), {k,nn}], {x,0,nn(nn+1)/2}], x]]; Flatten[Position[t,0]] (* T. D. Noe, Jul 24 2006 *)

Formula

Complement of A061208.

Extensions

Entry revised by N. J. A. Sloane, Jul 23 2006

A331843 Number of compositions (ordered partitions) of n into distinct triangular numbers.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 0, 2, 7, 2, 0, 2, 6, 1, 4, 6, 2, 12, 24, 3, 8, 0, 8, 32, 6, 2, 13, 26, 6, 34, 36, 0, 32, 150, 3, 20, 50, 14, 54, 126, 32, 32, 12, 55, 160, 78, 122, 44, 174, 4, 72, 294, 36, 201, 896, 128, 62, 180, 176, 164, 198, 852, 110, 320, 159, 212, 414
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2020

Keywords

Examples

			a(10) = 7 because we have [10], [6, 3, 1], [6, 1, 3], [3, 6, 1], [3, 1, 6], [1, 6, 3] and [1, 3, 6].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0,
          `if`(issqr(8*n+1), 1+h(n-1), h(n-1)))
        end:
    b:= proc(n, i, p) option remember; (t->
          `if`(t*(i+2)/3n, 0, b(n-t, i-1, p+1)))))((i*(i+1)/2))
        end:
    a:= n-> b(n, h(n), 0):
    seq(a(n), n=0..73);  # Alois P. Heinz, Jan 31 2020
  • Mathematica
    h[n_] := h[n] = If[n<1, 0, If[IntegerQ @ Sqrt[8n+1], 1 + h[n-1], h[n-1]]];
    b[n_, i_, p_] := b[n, i, p] = Function[t, If[t (i + 2)/3 < n, 0, If[n == 0, p!, b[n, i-1, p] + If[t>n, 0, b[n - t, i - 1, p + 1]]]]][(i(i + 1)/2)];
    a[n_] := b[n, h[n], 0];
    a /@ Range[0, 73] (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)

A307597 Number of partitions of n into 2 distinct positive triangular numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 3, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2019

Keywords

Comments

The greedy inverse (positions of first occurrence of n) starts 0, 4, 16, 81, 471, 2031, 1381, 11781, 6906, 17956, ... - R. J. Mathar, Apr 28 2020

Examples

			a(16) = 2 because we have [15, 1] and [10, 6].
		

Crossrefs

Formula

a(n) = [x^n y^2] Product_{k>=1} (1 + y*x^(k*(k+1)/2)).
a(n) = Sum_{k=1..floor((n-1)/2)} c(k) * c(n-k), where c = A010054. - Wesley Ivan Hurt, Jan 06 2024

A307598 Number of partitions of n into 3 distinct positive triangular numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 0, 4, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 2, 2, 2, 1, 3, 2, 0, 4, 1, 1, 5, 1, 3, 2, 2, 3, 2, 2, 1, 4, 1, 2, 4, 2, 2, 3, 2, 1, 3, 2, 4, 3, 3, 2, 2, 3, 1, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2019

Keywords

Comments

The greedy inverse starts 0, 10, 19, 37, 52, 82, 109, 136, 241, 226, 217, 247, 364, 427, 457, 541, 532, 577, 637, 961, 721, 787, 1066, 1102, 1381, 1267, 1564, 1192, 1396, 1816, 1501, 1612, 1927, 1942, 2242, 1792, 2842, 2587, 2557, 2422, ... - R. J. Mathar, Apr 28 2020

Examples

			a(19) = 2 because we have [15, 3, 1] and [10, 6, 3].
		

Crossrefs

Formula

a(n) = [x^n y^3] Product_{k>=1} (1 + y*x^(k*(k+1)/2)).

A288126 Number of partitions of n-th triangular number (A000217) into distinct triangular parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 4, 7, 6, 4, 14, 15, 19, 31, 28, 43, 57, 80, 103, 127, 181, 234, 295, 398, 539, 663, 888, 1178, 1419, 1959, 2519, 3102, 4201, 5282, 6510, 8717, 11162, 13557, 18108, 22965, 28206, 36860, 46350, 58060, 73857, 93541, 117058, 147376, 186158, 232949, 292798, 365639
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Examples

			a(4) = 2 because 4th triangular number is 10 and we have [10], [6, 3, 1].
		

Crossrefs

Programs

  • Maple
    N:= 100:
    G:= mul(1+x^(k*(k+1)/2),k=1..N):
    seq(coeff(G,x,n*(n+1)/2),n=0..N); # Robert Israel, Jun 06 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + x^(k (k + 1)/2), {k, 1, n}], {x, 0, n (n + 1)/2}], {n, 0, 54}]

Formula

a(n) = [x^(n*(n+1)/2)] Product_{k>=1} (1 + x^(k(k+1)/2)).
a(n) = A024940(A000217(n)).

A292518 Expansion of Product_{k>=1} (1 - x^(k*(k+1)/2)).

Original entry on oeis.org

1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -2, 1, 0, 1, -1, -1, 2, -1, 1, -2, 1, 0, 0, 0, 0, 1, -1, 1, -3, 2, -1, 2, -1, 0, 1, -1, 0, -2, 3, -1, 1, -2, 1, 1, -2, 0, 0, 2, 0, -1, 0, 2, -2, -1, -1, 1, 2, -1, 1, -1, 1, -2, 1, -2, 3, 1, -2, 0, -2, 3, -1, -1, 0, 3, -1, 0, -2, 1, 0, -3, 2, 2, 1, -1, -1, 0, 0, -1, 0, 2, -1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2017

Keywords

Comments

Convolution inverse of A007294.
The difference between the number of partitions of n into an even number of distinct triangular numbers and the number of partitions of n into an odd number of distinct triangular numbers.
Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054. - Gus Wiseman, Oct 22 2018

Crossrefs

Product_{k>=1} (1 - x^(k*((m-2)*k-(m-4))/2)): this sequence (m=3), A276516 (m=4), A305355 (m=5).

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Product[1 - x^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^(k*(k+1)/2)).

A298858 Number of ordered ways of writing n-th triangular number as a sum of n nonzero triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 4, 11, 86, 777, 4670, 36075, 279482, 2345201, 21247326, 197065752, 1983741228, 20769081251, 228078253168, 2604226354265, 30880251148086, 379415992755572, 4818158748326064, 63116999199457944, 851467484377802094, 11811530978240316682, 168243449082524484856
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(4) = 4 because fourth triangular number is 10 and we have [3, 3, 3, 1], [3, 3, 1, 3], [3, 1, 3, 3] and [1, 3, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k*(k+1)/2))^n.

A274046 a(n) is the smallest positive integer which can be represented as the sum of distinct positive triangular numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

1, 10, 25, 31, 49, 46, 55, 67, 70, 76, 82, 117, 102, 91, 97, 107, 101, 135, 110, 112, 116, 115, 119, 128, 0, 131, 133, 130, 148, 145, 136, 0, 137, 149, 154, 146, 0, 169, 152, 157, 155, 168, 171, 158, 174, 161, 0, 183, 184, 167, 0, 0, 173, 0, 175, 181, 190
Offset: 1

Views

Author

Phil Scovis, Jun 07 2016

Keywords

Comments

46 is the smallest number that can be expressed as the sum of distinct triangular numbers in five ways, but 49 is the smallest that can be so expressed in exactly five ways. There are further examples of this phenomenon.

Examples

			25 = 1 + 3 + 6 + 15 = 10 + 15 = 1 + 3 + 21. This is the smallest number that can be written as the sum of distinct triangular numbers in three different ways. So a(3)=25.
The first null values of a(n) occur for n = 25, 32, 37, 47, 51, 52, 54, 61,... - _Giovanni Resta_, Jun 08 2016
		

Crossrefs

Programs

  • Mathematica
    nT[n_, m_: 0] := nT[n,m] = If[n == 0, 1, Block[{t, i=m+1, s=0}, While[(t = i*(i+1)/2) <= n, s += nT[n-t, i]; i++]; s]]; a[n_] := Block[{k=0, t}, While[(t = nT[++k]) != n && t < Max[2*n, 30]]; If[t == n, k, 0]]; Array[a, 57] (* Giovanni Resta, Jun 08 2016 *)

Extensions

a(15)-a(20) from Tom Edgar, Jun 08 2016
a(21)-a(57) from Giovanni Resta, Jun 08 2016
Showing 1-10 of 42 results. Next