A180056
The number of permutations of {1,2,...,2n} with n ascents.
Original entry on oeis.org
1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650, 679562217794156938, 301958232385734088196, 160755658074834738495566, 101019988341178648636047412, 73990373947612503295166622044, 62481596875767023932367207962680
Offset: 0
-
A180056 :=
proc(n) local j;
add((-1)^j*binomial(2*n+1,j)*(n-j+1)^(2*n),j=0..n)
end:
# A180056_list(m) returns [a_0,a_1,..,a_m]
A180056_list :=
proc(m) local A, R, M, n, k;
R := 1; M := m + 1;
A := array([seq(1, n = 1..M)]);
for n from 2 to M do
for k from 2 to M do
if n = k then R := R, A[k] fi;
A[k] := n*A[k-1] + k*A[k]
od
od;
R
end:
-
A025585[n_] := Sum[(-1)^j*(n-j)^(2*n-1)*Binomial[2*n, j], {j, 0, n}]; a[0] = 1; a[n_] := A025585[n+1]/(2*n+2); Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 28 2013, after Gary Detlefs *)
<< Combinatorica`; Table[Combinatorica`Eulerian[2 n, n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
-
def A180056_list(m):
ret = [1]
M = m + 1
A = [1 for i in range(0, M)]
for n in range(2, M):
for k in range(2, M):
if n == k:
ret.append(A[k])
A[k] = n*A[k-1] + k*A[k]
return ret
A177042
Eulerian version of the Catalan numbers, a(n) = A008292(2*n+1,n+1)/(n+1).
Original entry on oeis.org
1, 2, 22, 604, 31238, 2620708, 325024572, 55942352184, 12765597850950, 3730771315561300, 1359124435588313876, 603916464771468176392, 321511316149669476991132, 202039976682357297272094824, 147980747895225006590333244088, 124963193751534047864734415925360
Offset: 0
-
A177042:=func< n | n eq 0 select 1 else 2*(&+[(-1)^k*Binomial(2*n+1,k)*(n-k+1)^(2*n): k in [0..n]]) >;
[A177042(n): n in [0..40]]; // G. C. Greubel, Jun 18 2024
-
A177042 := proc(n) A008292(2*n+1,n+1)/(n+1) ; end proc:
seq(A177042(n),n=0..10) ; # R. J. Mathar, Jan 08 2011
A177042 := n -> A025585(n+1)/(n+1):
A177042 := n -> `if`(n=0,1,2*A180056(n)):
# The A173018-based recursion below needs no division!
A := proc(n, k) option remember;
if n = 0 and k = 0 then 1
elif k > n or k < 0 then 0
else (n-k) *A(n-1, k-1) +(k+1) *A(n-1, k)
fi
end:
A177042 := n-> `if`(n=0, 1, 2*A(2*n, n)):
seq(A177042(n), n=0..30);
# Peter Luschny, Jan 11 2011
-
<< DiscreteMath`Combinatorica`
Table[(Eulerian[2*n + 1, n])/(n + 1), {n, 0, 20}]
(* Second program: *)
A[n_, k_] := A[n, k] = Which[n == 0 && k == 0, 1, k > n || k < 0, 0, True, (n - k)*A[n - 1, k - 1] + (k + 1)*A[n - 1, k]]; A177042[n_] := If[n == 0, 1, 2*A[2*n, n]]; Table[A177042[n], {n, 0, 30}] (* Jean-François Alcover, Jul 13 2017, after Peter Luschny *)
-
def A177042(n): return 2*sum((-1)^k*binomial(2*n+1,k)*(n-k+1)^(2*n) for k in range(n+1)) - int(n==0)
[A177042(n) for n in range(41)] # G. C. Greubel, Jun 18 2024
A006551
Maximal Eulerian numbers.
Original entry on oeis.org
1, 1, 4, 11, 66, 302, 2416, 15619, 156190, 1310354, 15724248, 162512286, 2275172004, 27971176092, 447538817472, 6382798925475, 114890380658550, 1865385657780650, 37307713155613000, 679562217794156938, 14950368791471452636
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..450
- Digital Library of Mathematical Functions, Table 26.14.1 [_Peter Luschny_, Aug 08 2010]
- Herman Chau, On Enumerating Higher Bruhat Orders Through Deletion and Contraction, arXiv:2412.10532 [math.CO], 2024. See p. 20.
- L. Lesieur and J.-N. Nicolas, On the Eulerian numbers M_n = max_{1<=k<=n} A(n,k), European J. Combin., 13 (1992), 379-399.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
-
a := proc(n) local j,k; k := iquo(n,2);
add((-1)^j*binomial(n+1,j)*(k-j+1)^n,j=0..k) end:
# Peter Luschny, Aug 08 2010
# Computation by recursion:
A006551 := proc(r) local W; W := proc(m) local A,n,k;
A:=[seq(1, n=1..m)]; if m < 2 then RETURN(1) fi;
for n from 2 to m-1 do for k from 2 to m do
A[k] := n*A[k-1]+k*A[k] od od; [A[m-1],A[m]] end:
W((r+2+irem(r,2))/2)[2-irem(r,2)] end:
# Peter Luschny, Jan 12 2011
-
a[n_] := With[{k = Quotient[n, 2]}, Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k}]]; Array[a, 25] (* Jean-François Alcover, Feb 19 2017, after Peter Luschny *)
A011818
Normalized volume of center slice of n-dimensional cube: 2^n* n!*Vol({ (x_1,...,x_n) in [ 0,1 ]^n: n/2 <= Sum_{i = 1..n} x_i <= (n+1)/2 }).
Original entry on oeis.org
1, 3, 16, 115, 1056, 11774, 154624, 2337507, 39984640, 763546234, 16101629952, 371644257582, 9319104528384, 252270887452380, 7332475985461248, 227761317947788323, 7529455986838732800, 263948439074152148450
Offset: 1
Guenter M. Ziegler (ziegler(AT)math.tu-berlin.de)
-
a := n -> add(binomial(n,k)*eulerian1(n,k), k=0..n-1):
seq(a(n), n=1..18); # Peter Luschny, Jun 30 2016
-
Eulerian1[n_, k_] = Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}];
a[n_] := Sum[Binomial[n, k] Eulerian1[n, k], {k, 0, n-1}];
Array[a, 18] (* Jean-François Alcover, Jun 03 2019 *)
A141693
Triangle read by rows: T(n,k) = (2*k - n)*A008292(n,k) with T(n,n) = n, 0 <= k <= n, where A008292 is the triangle of Eulerian numbers.
Original entry on oeis.org
0, -1, 1, -2, 0, 2, -3, -4, 1, 3, -4, -22, 0, 2, 4, -5, -78, -66, 26, 3, 5, -6, -228, -604, 0, 114, 4, 6, -7, -600, -3573, -2416, 1191, 360, 5, 7, -8, -1482, -17172, -31238, 0, 8586, 988, 6, 8, -9, -3514, -73040, -264702, -156190, 88234, 43824, 2510, 7, 9, -10
Offset: 0
Triangle begins:
0;
-1, 1;
-2, 0, 2;
-3, -4, 1, 3;
-4, -22, 0, 2, 4;
-5, -78, -66, 26, 3, 5;
-6, -228, -604, 0, 114, 4, 6;
-7, -600, -3573, -2416, 1191, 360, 5, 7;
-8, -1482, -17172, -31238, 0, 8586, 988, 6, 8;
-9, -3514, -73040, -264702, -156190, 88234, 43824, 2510, 7, 9;
...
-
T:= proc(n,k) `if`(n=k,n,(2*k-n)*add((-1)^j*(k-j+1)^n*binomial(n+1,j),j=0..k)); end proc: seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Oct 06 2018
T := (n, k) -> `if`(n = k, n, (2*k - n)*combinat:-eulerian1(n,k)):
seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Oct 06 2018
-
T[n_, k_] = If[n == k, n, (2*k - n)*Sum[(-1)^j*(k - j + 1)^n*Binomial[n + 1, j], {j, 0, k}]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}]//Flatten
-
T(n, k) := if n = k then n else (2*k - n)*sum((-1)^j*(k - j + 1)^n*binomial(n + 1, j), j, 0, k)$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* Franck Maminirina Ramaharo, Oct 05 2018 */
Showing 1-5 of 5 results.
Comments