cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A180056 The number of permutations of {1,2,...,2n} with n ascents.

Original entry on oeis.org

1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650, 679562217794156938, 301958232385734088196, 160755658074834738495566, 101019988341178648636047412, 73990373947612503295166622044, 62481596875767023932367207962680
Offset: 0

Views

Author

Peter Luschny, Aug 08 2010

Keywords

Comments

Define the Eulerian numbers A(n,k) (see A008292) to be the number of permutations of {1,2,..,n} with k ascents: A(n,k) = Sum_{j=0..k} (-1)^j binomial(n+1,j)*(k-j+1)^n.
Then a(n) = A(2*n,n) are the central Eulerian numbers. (Analogous to what are called the central binomial coefficients).

Crossrefs

A bisection of A006551.
A diagonal of A321967.

Programs

  • Maple
    A180056 :=
    proc(n) local j;
      add((-1)^j*binomial(2*n+1,j)*(n-j+1)^(2*n),j=0..n)
    end:
    # A180056_list(m) returns [a_0,a_1,..,a_m]
    A180056_list :=
      proc(m) local A, R, M, n, k;
        R := 1; M := m + 1;
        A := array([seq(1, n = 1..M)]);
        for n from 2 to M do
          for k from 2 to M do
            if n = k then R := R, A[k] fi;
            A[k] := n*A[k-1] + k*A[k]
          od
        od;
      R
    end:
  • Mathematica
    A025585[n_] := Sum[(-1)^j*(n-j)^(2*n-1)*Binomial[2*n, j], {j, 0, n}]; a[0] = 1; a[n_] := A025585[n+1]/(2*n+2); Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 28 2013, after Gary Detlefs *)
    << Combinatorica`; Table[Combinatorica`Eulerian[2 n, n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
  • Python
    def A180056_list(m):
        ret = [1]
        M = m + 1
        A = [1 for i in range(0, M)]
        for n in range(2, M):
            for k in range(2, M):
                if n == k:
                    ret.append(A[k])
                A[k] = n*A[k-1] + k*A[k]
        return ret

Formula

a(n-1) = A025585(n)/(2*n). - Gary Detlefs, Nov 11 2011
a(n+1)/a(n) ~ 4*n^2. - Ran Pan, Oct 26 2015
a(n) ~ sqrt(3) * 2^(2*n+1) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Oct 16 2016
From Alois P. Heinz, Jul 21 2018: (Start)
a(n) = ceiling(1/2 * (2n)! * [x^(2n) y^n] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x))).
a(n) = (2n)! * [x^(2n) y^n] (1-y)/(1-y*exp((1-y)*x)). (End)
a(n) = A123125(2n,n). - Alois P. Heinz, Nov 13 2024

Extensions

Partially edited by N. J. A. Sloane, Aug 08 2010

A177042 Eulerian version of the Catalan numbers, a(n) = A008292(2*n+1,n+1)/(n+1).

Original entry on oeis.org

1, 2, 22, 604, 31238, 2620708, 325024572, 55942352184, 12765597850950, 3730771315561300, 1359124435588313876, 603916464771468176392, 321511316149669476991132, 202039976682357297272094824, 147980747895225006590333244088, 124963193751534047864734415925360
Offset: 0

Views

Author

Roger L. Bagula, May 01 2010

Keywords

Comments

According to the Bidkhori and Sullivant reference's abstract, authors show "that the Eulerian-Catalan numbers enumerate Dyck permutations, [providing] two proofs for this fact, the first using the geometry of alcoved polytopes and the second a direct combinatorial proof via an Eulerian-Catalan analog of the Chung-Feller theorem." - Jonathan Vos Post, Jan 07 2011
Twice the number of permutations of {1,2,...,2n} with n ascents. - Peter Luschny, Jan 11 2011

Crossrefs

Bisection (odd part) of A303287.
Row sums of A316728.

Programs

  • Magma
    A177042:=func< n | n eq 0 select 1 else 2*(&+[(-1)^k*Binomial(2*n+1,k)*(n-k+1)^(2*n): k in [0..n]]) >;
    [A177042(n): n in [0..40]]; // G. C. Greubel, Jun 18 2024
    
  • Maple
    A177042 := proc(n) A008292(2*n+1,n+1)/(n+1) ; end proc:
    seq(A177042(n),n=0..10) ; # R. J. Mathar, Jan 08 2011
    A177042 := n -> A025585(n+1)/(n+1):
    A177042 := n -> `if`(n=0,1,2*A180056(n)):
    # The A173018-based recursion below needs no division!
    A := proc(n, k) option remember;
           if n = 0 and k = 0 then 1
         elif k > n  or k < 0 then 0
         else (n-k) *A(n-1, k-1) +(k+1) *A(n-1, k)
           fi
         end:
    A177042 := n-> `if`(n=0, 1, 2*A(2*n, n)):
    seq(A177042(n), n=0..30);
    # Peter Luschny, Jan 11 2011
  • Mathematica
    << DiscreteMath`Combinatorica`
    Table[(Eulerian[2*n + 1, n])/(n + 1), {n, 0, 20}]
    (* Second program: *)
    A[n_, k_] := A[n, k] = Which[n == 0 && k == 0, 1, k > n || k < 0, 0, True, (n - k)*A[n - 1, k - 1] + (k + 1)*A[n - 1, k]]; A177042[n_] := If[n == 0, 1, 2*A[2*n, n]]; Table[A177042[n], {n, 0, 30}] (* Jean-François Alcover, Jul 13 2017, after Peter Luschny *)
  • SageMath
    def A177042(n): return 2*sum((-1)^k*binomial(2*n+1,k)*(n-k+1)^(2*n) for k in range(n+1)) - int(n==0)
    [A177042(n) for n in range(41)] # G. C. Greubel, Jun 18 2024

Formula

a(n) = 2*A180056(n) for n > 0, A180056 the central Eulerian numbers in the sense of A173018.
a(n) = A025585(n+1)/(n+1), A025585 the central Eulerian numbers in the sense of A008292.
a(n) = 2 Sum_{k=0..n} (-1)^k binomial(2n+1,k) (n-k+1)^(2n).
a(n) = (n+1)^(-1) Sum_{k=0..n} (-1)^k binomial(2n+2,k)(n+1-k)^(2n+1). - Peter Luschny, Jan 11 2011
a(n) = A008518(2n,n). - Alois P. Heinz, Jun 12 2017
From Alois P. Heinz, Jul 21 2018: (Start)
a(n) = (2n)! * [x^(2n) y^n] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x)).
a(n) = (2n+1)!/(n+1) * [x^(2n+1) y^(n+1)] (1-y)/(1-y*exp((1-y)*x)). (End)

Extensions

Edited by Alois P. Heinz, Jan 14 2011

A006551 Maximal Eulerian numbers.

Original entry on oeis.org

1, 1, 4, 11, 66, 302, 2416, 15619, 156190, 1310354, 15724248, 162512286, 2275172004, 27971176092, 447538817472, 6382798925475, 114890380658550, 1865385657780650, 37307713155613000, 679562217794156938, 14950368791471452636
Offset: 1

Views

Author

Keywords

Comments

From Peter Luschny, Aug 08 2010: (Start)
Define A(n,k) as the number of permutations of {1,2,..,n} with k ascents.
A(n,k) = sum_{j=0}^k (-1)^j binomial(n+1,j)(k-j+1)^n.
Then a(n) = A(n, floor(n/2)). The Digital Library of Mathematical Functions calls the A(n,k) Eulerian numbers. With this terminology a(n) are the middle Eulerian numbers and A180056 the central Eulerian numbers. (End)
Number of permutations of {1,2,..,n} with floor(n/2) descents. - Joerg Arndt, Aug 15 2014

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292. Bisections are A025585 and A180056.

Programs

  • Maple
    a := proc(n) local j,k; k := iquo(n,2);
    add((-1)^j*binomial(n+1,j)*(k-j+1)^n,j=0..k) end:
    #  Peter Luschny, Aug 08 2010
    # Computation by recursion:
    A006551 := proc(r) local W; W := proc(m) local A,n,k;
    A:=[seq(1, n=1..m)]; if m < 2 then RETURN(1) fi;
    for n from 2 to m-1 do for k from 2 to m do
    A[k] := n*A[k-1]+k*A[k] od od; [A[m-1],A[m]] end:
    W((r+2+irem(r,2))/2)[2-irem(r,2)] end:
    # Peter Luschny, Jan 12 2011
  • Mathematica
    a[n_] := With[{k = Quotient[n, 2]}, Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k}]]; Array[a, 25] (* Jean-François Alcover, Feb 19 2017, after Peter Luschny *)

Formula

a(n) = sum_{0<=j<=floor(n/2)} (-1)^j binomial(n+1,j) (floor(n/2)-j+1)^n. [Peter Luschny, Aug 08 2010]
a(n+1)/a(n) ~ n. - Ran Pan, Oct 26 2015
a(n) ~ 2 * sqrt(3) * n^n / exp(n). - Vaclav Kotesovec, Oct 28 2021

A011818 Normalized volume of center slice of n-dimensional cube: 2^n* n!*Vol({ (x_1,...,x_n) in [ 0,1 ]^n: n/2 <= Sum_{i = 1..n} x_i <= (n+1)/2 }).

Original entry on oeis.org

1, 3, 16, 115, 1056, 11774, 154624, 2337507, 39984640, 763546234, 16101629952, 371644257582, 9319104528384, 252270887452380, 7332475985461248, 227761317947788323, 7529455986838732800, 263948439074152148450
Offset: 1

Views

Author

Guenter M. Ziegler (ziegler(AT)math.tu-berlin.de)

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n,k)*eulerian1(n,k), k=0..n-1):
    seq(a(n), n=1..18); # Peter Luschny, Jun 30 2016
  • Mathematica
    Eulerian1[n_, k_] = Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}];
    a[n_] := Sum[Binomial[n, k] Eulerian1[n, k], {k, 0, n-1}];
    Array[a, 18] (* Jean-François Alcover, Jun 03 2019 *)

Formula

V(d) = sum_{k=1}^{d-1} {d choose k-1} A_{d, k} where A_{k, d} denotes the Eulerian number (permutations of a d-set with k-1 descents) - see A008292.
Restated: a(n) = Sum_{k = 1..n} C(n,k-1)*A008292(n,k) for n>=1.
From Peter Bala, Jun 28 2016: (Start)
a(n) = 1/2*Sum_{k = 0..floor((n+1)/2)} (-1)^k*binomial(n + 1,k)*(n + 1 - 2*k)^n.
a(n) ~ sqrt(3)/2*(2/e)^(n+1)*(n+1)^n. (End)
a(2*n-1)/2^(2*n-2) = A025585(n) for n>=1. - Peter Luschny, Jun 30 2016

Extensions

More terms from Paul D. Hanna, Mar 15 2006

A141693 Triangle read by rows: T(n,k) = (2*k - n)*A008292(n,k) with T(n,n) = n, 0 <= k <= n, where A008292 is the triangle of Eulerian numbers.

Original entry on oeis.org

0, -1, 1, -2, 0, 2, -3, -4, 1, 3, -4, -22, 0, 2, 4, -5, -78, -66, 26, 3, 5, -6, -228, -604, 0, 114, 4, 6, -7, -600, -3573, -2416, 1191, 360, 5, 7, -8, -1482, -17172, -31238, 0, 8586, 988, 6, 8, -9, -3514, -73040, -264702, -156190, 88234, 43824, 2510, 7, 9, -10
Offset: 0

Views

Author

Roger L. Bagula, Sep 09 2008

Keywords

Examples

			Triangle begins:
    0;
   -1,     1;
   -2,     0,      2;
   -3,    -4,      1,       3;
   -4,   -22,      0,       2,       4;
   -5,   -78,    -66,      26,       3,     5;
   -6,  -228,   -604,       0,     114,     4,    6;
   -7,  -600,  -3573,   -2416,    1191,   360,    5,     7;
   -8, -1482, -17172,  -31238,       0,  8586,  988,     6, 8;
   -9, -3514, -73040, -264702, -156190, 88234, 43824, 2510, 7, 9;
  ...
		

Crossrefs

Cf. A008292.

Programs

  • Maple
    T:= proc(n,k) `if`(n=k,n,(2*k-n)*add((-1)^j*(k-j+1)^n*binomial(n+1,j),j=0..k)); end proc: seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Oct 06 2018
    T := (n, k) -> `if`(n = k, n, (2*k - n)*combinat:-eulerian1(n,k)):
    seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Oct 06 2018
  • Mathematica
    T[n_, k_] = If[n == k, n, (2*k - n)*Sum[(-1)^j*(k - j + 1)^n*Binomial[n + 1, j], {j, 0, k}]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}]//Flatten
  • Maxima
    T(n, k) := if n = k then n else (2*k - n)*sum((-1)^j*(k - j + 1)^n*binomial(n + 1, j), j, 0, k)$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* Franck Maminirina Ramaharo, Oct 05 2018 */

Formula

Sum_{k=0..n} T(n,k) = A005096(n), n > 0.
From Franck Maminirina Ramaharo, Oct 06 2018: (Start)
T(n,k) = (2*k - n)*Sum_{j=0..k} (-1)^j*(k - j + 1)^n*binomial(n + 1, j) for 0 <= k <= n - 1 and T(n,n) = n.
T(2*n-1,n-1) = -A025585(n).
T(2*n,n-1) = -A177042(n). (End)

Extensions

Edited, new name and offset corrected by Franck Maminirina Ramaharo, Oct 06 2018
Showing 1-5 of 5 results.