A026000
a(n) = T(2n, n), where T is the Delannoy triangle (A008288).
Original entry on oeis.org
1, 5, 41, 377, 3649, 36365, 369305, 3800305, 39490049, 413442773, 4354393801, 46082942185, 489658242241, 5220495115997, 55818956905529, 598318746037217, 6427269150511105, 69175175263888037, 745778857519239785, 8052432236270744665, 87063177396677721409
Offset: 0
A(x) = 1 + 5*x + 41*x^2 + 377*x^3 + 3649*x^4 + 36365*x^5 + ...
-
Flatten[{1,RecurrenceTable[{2*n*(2*n-1)*a[n] == (46*n^2-51*n+15)*a[n-1] - (18*n^2-82*n+85)*a[n-2] - (n-2)*(2*n-5)*a[n-3],a[1]==5,a[2]==41,a[3]==377},a,{n,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)
a[n_] := HypergeometricPFQ[{-n, -n, n + 1}, {1/2, 1}, 1];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 14 2018 *)
-
seq(N) = {
my(a = vector(N)); a[1]=5; a[2]=41; a[3]=377;
for (n=4, N,
a[n] = (46*n^2-51*n+15)*a[n-1] - (18*n^2-82*n+85)*a[n-2] - (n-2)*(2*n-5)*a[n-3];
a[n] /= 2*n*(2*n-1));
concat(1, a);
};
seq(18)
\\ test: y=Ser(seq(303),'x); 0 == 4*(x^2 + 11*x - 1)*y^3 + (x + 3)*y + 1
\\ Gheorghe Coserea, Aug 31 2018
A331329
a(n) = binomial(5*n, n)*hypergeom([-4*n, -n], [-5*n], -1).
Original entry on oeis.org
1, 9, 145, 2625, 50049, 982729, 19665841, 398796225, 8166636545, 168502295625, 3497529199185, 72949645000065, 1527671538372225, 32100078290806665, 676451066002195825, 14290577765009652865, 302557549412667613185, 6417968867896642617225, 136371773642235542394385
Offset: 0
-
a[n_] := Binomial[5 n, n] Hypergeometric2F1[-4 n, -n, -5 n, -1];
Array[a, 19, 0]
A341491
a(n) = binomial(6*n, n) * hypergeom([-5*n, -n], [-6*n], -1).
Original entry on oeis.org
1, 11, 221, 4991, 118721, 2908411, 72616013, 1837271615, 46943003137, 1208483403179, 31297149356221, 814471993937855, 21281058718583873, 557930580979801755, 14669716953106628781, 386675596518995000191, 10214494658006725840897, 270345191656309313382475
Offset: 0
-
Table[Binomial[6*n, n] * Hypergeometric2F1[-5*n, -n, -6*n, -1], {n,0,20}]
A341476
Coefficients related to the asymptotics of generalized Delannoy numbers.
Original entry on oeis.org
1, 3, 22, 223, 2792, 42671, 761984, 15707707, 365122688, 9491746747, 271962399232, 8539383210711, 290937486190592, 10710312199270503, 422984587596455936, 17864076455770831219, 802450164859200372736, 38242916911507537149427, 1925477163696152909447168, 102213291475268656299164879
Offset: 1
Lim_{n->infinity} A001850(n)^(1/n) = ( 3 + 2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = ( 22 + 10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = ( 223 + 70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 + 680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
A341477
Coefficients related to the asymptotics of generalized Delannoy numbers.
Original entry on oeis.org
0, 2, 10, 70, 680, 8346, 125504, 2218350, 45335680, 1047314578, 27079557632, 772687787510, 24172386314240, 821114930966890, 30146801401143296, 1187943632192716894, 50068690149298438144, 2245175953053786221730, 106828553482726336102400, 5371204894269759411503910
Offset: 1
Lim_{n->infinity} A001850(n)^(1/n) = ( 3 + 2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = ( 22 + 10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = ( 223 + 70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 + 680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
A181675
V(n,n^2), where V is the number of integer points in an n-dimensional sphere of Lee-radius n^2 centered at the origin.
Original entry on oeis.org
3, 41, 1159, 50049, 2908411, 212358985, 18665359119, 1917971421185, 225555471838387, 29871434052884841, 4398867465890529303, 712959801840558794625, 126115813138335816685995
Offset: 2
-
Array[Sum[2^j*Binomial[#1, j] Binomial[#2, j], {j, 0, Min[#1, #2]}] & @@ {#, #^2} &, 13] (* Michael De Vlieger, Jul 05 2019 *)
A227964
Triangle where the g.f. of row n equals (1-x-x^2+x^3)^n and terms T(n,k) are read by rows n>=0, k=0..3*n.
Original entry on oeis.org
1, 1, -1, -1, 1, 1, -2, -1, 4, -1, -2, 1, 1, -3, 0, 8, -6, -6, 8, 0, -3, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1, 1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1, 1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1
Offset: 0
Triangle begins:
1;
1, -1, -1, 1;
1, -2, -1, 4, -1, -2, 1;
1, -3, 0, 8, -6, -6, 8, 0, -3, 1;
1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1;
1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1;
1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1;
1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1; ...
-
{T(n,k)=polcoeff((1-x-x^2+x^3 +x*O(x^k))^n,k)}
for(n=0,10,for(k=0,3*n,print1(T(n,k),", "));print(""))
A341470
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j,j).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 41, 63, 1, 1, 9, 85, 377, 321, 1, 1, 11, 145, 1159, 3649, 1683, 1, 1, 13, 221, 2625, 16641, 36365, 8989, 1, 1, 15, 313, 4991, 50049, 246047, 369305, 48639, 1, 1, 17, 421, 8473, 118721, 982729, 3707509, 3800305, 265729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 41, 85, 145, 221, ...
1, 63, 377, 1159, 2625, 4991, ...
1, 321, 3649, 16641, 50049, 118721, ...
1, 1683, 36365, 246047, 982729, 2908411, ...
-
T(n, k) = sum(j=0, n, binomial(k*n, n-j)*binomial(k*n+j, j));
-
T(n, k) = sum(j=0, n, 2^j*binomial(n, j)*binomial(k*n, j));
Showing 1-8 of 8 results.
Comments