cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A026001 a(n) = T(3n,n), where T = Delannoy triangle (A008288).

Original entry on oeis.org

1, 7, 85, 1159, 16641, 246047, 3707509, 56610575, 872893441, 13560999991, 211939849045, 3328419072535, 52481589415425, 830317511708367, 13174519143904245, 209559710593266719, 3340604559333629953, 53354776911196959335, 853607938952248383829, 13677336690921351929767
Offset: 0

Views

Author

Keywords

Comments

If the Delannoy triangle is defined by the Maple code in A008288, this is A008288(n, 3*n-2), n >= 1. - N. J. A. Sloane, Oct 29 2006

Crossrefs

Programs

  • Maple
    F := (2-t)/(3*t^2-8*t+2);  G := t*(t-1)^3/(t-2);  Ginv := RootOf(numer(G-x),t); ogf := series(eval(F, t=Ginv), x=0, 25); # Mark van Hoeij, Oct 30 2011
  • Mathematica
    a[n_] := Binomial[4 n, n] Hypergeometric2F1[-3 n, -n, -4 n, -1];
    Array[a, 20, 0] (* Peter Luschny, Jan 31 2020 *)

Formula

G.f.: F(G^(-1)(x)) where F = (2-t)/(3*t^2-8*t+2) and G = t*(t-1)^3/(t-2). - Mark van Hoeij, Oct 30 2011
From Peter Bala, Jan 29 2020: (Start)
a(n) = Sum_{k = 0..n} C(n,k)*C(3*n+k,n).
a(n) = Sum_{k = 0..n} C(n,k)*C(4*n-k,n).
a(n) = Sum_{k = 0..n} C(3*n,n-k)*C(3*n+k,k).
a(n) = Sum_{k = 0..n} 2^k*C(n,k)*C(3*n,k).
a(n) = Sum_{k = 0..n} C(4*n-k,k)*C(4*n-2*k,n-k).
3*n*(3*n - 1)*(3*n - 2)*(70*n^2 - 189*n + 127)*a(n) = 2*(15610*n^5 - 65562*n^4 + 102255*n^3 - 72864*n^2 + 23369*n - 2640)*a(n-1) - 3*(n - 1)* (3*n - 4)*(3*n - 5)*(70*n^2 - 49*n + 8)*a(n-2) with a(0) = 1, a(1) = 7.
(End)
a(n) = binomial(4*n, n)*hypergeom([-3*n, -n], [-4*n], -1). - Peter Luschny, Jan 31 2020
a(n) ~ sqrt(1 + 13/(4*sqrt(10))) * (223 + 70*sqrt(10))^n / (sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Feb 13 2021
D-finite with recurrence +435*n*(3*n-1)*(3*n-2)*a(n) +(-53978*n^3+43545*n^2+39923*n-35580)*a(n-1) +3*(-57648*n^3+321915*n^2-580787*n+339980)*a(n-2) +9*(1634*n^3-11365*n^2+27137*n-22546)*a(n-3) -27*(3*n-10)*(3*n-11)*(n-3)*a(n-4)=0. - R. J. Mathar, Aug 01 2022

Extensions

Corrected and extended by N. J. A. Sloane, Oct 29 2006

A339710 a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n + k, k)*2^k.

Original entry on oeis.org

1, 7, 81, 1051, 14353, 201807, 2891409, 41976627, 615371169, 9089130967, 135048608401, 2016306678987, 30224723308081, 454603719479839, 6857319231939537, 103694587800440931, 1571449259865571137, 23860205774602899111, 362897293035114695121, 5527773456878667951483
Offset: 0

Views

Author

Yifan Zhang, Dec 13 2020

Keywords

References

  • Frits Beukers, Some Congruences for Apery Numbers, Mathematisch Instituut, University of Leiden, 1983, pages 1-2.

Crossrefs

Cf. A000079 (Sum(binomial(n, k))), A000984 (Sum(binomial(n, k)^2)), A026375 (Sum(binomial(n, k)*binomial(2*k, k))), A001850 (Sum(binomial(n, k)*binomial(n+k, k))), A005809 (Sum(binomial(n, k)*binomial(2*n, k))).

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*Binomial[2n+k,k]*2^k,{k,0,n}],{n,0,20}] (* or *)
    Table[Hypergeometric2F1[-n,1+2 n,1,-2],{n,0,20}] (* Stefano Spezia, Dec 17 2020 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(2*n + k, k)*2^k); \\ Michel Marcus, Feb 12 2021

Formula

a(n) = 2F1([-n, 1 + 2*n], [1], -2), where 2F1 is the hypergeometric function. - Stefano Spezia, Dec 17 2020
From Vaclav Kotesovec, May 11 2021: (Start)
Recurrence: 3*n*(2*n - 1)*(26*n - 35)*a(n) = (2444*n^3 - 5734*n^2 + 3830*n - 729)*a(n-1) - (n-1)*(2*n - 3)*(26*n - 9)*a(n-2).
a(n) ~ sqrt(3/8 + 11/(8*sqrt(13))) * ((47 + 13*sqrt(13))/6)^n / sqrt(Pi*n). (End)

Extensions

More terms from Stefano Spezia, Dec 17 2020

A331329 a(n) = binomial(5*n, n)*hypergeom([-4*n, -n], [-5*n], -1).

Original entry on oeis.org

1, 9, 145, 2625, 50049, 982729, 19665841, 398796225, 8166636545, 168502295625, 3497529199185, 72949645000065, 1527671538372225, 32100078290806665, 676451066002195825, 14290577765009652865, 302557549412667613185, 6417968867896642617225, 136371773642235542394385
Offset: 0

Views

Author

Peter Luschny, Jan 31 2020

Keywords

Comments

Special case of generalized Delannoy numbers (see cross-references):
T(n, k) = binomial(k*n, n)*hypergeom([(1-k)*n, -n], [-k*n], -1).

Crossrefs

Cf. A001850 (k=2), A026000 (k=3), A026001 (k=4), this sequence (k=5), A341491 (k=6).

Programs

  • Mathematica
    a[n_] := Binomial[5 n, n] Hypergeometric2F1[-4 n, -n, -5 n, -1];
    Array[a, 19, 0]

Formula

a(n) ~ sqrt(5 + 21/sqrt(17)) * (349 + 85*sqrt(17))^n / (sqrt(Pi*n) * 2^(5*n + 2)). - Vaclav Kotesovec, Feb 13 2021

A341491 a(n) = binomial(6*n, n) * hypergeom([-5*n, -n], [-6*n], -1).

Original entry on oeis.org

1, 11, 221, 4991, 118721, 2908411, 72616013, 1837271615, 46943003137, 1208483403179, 31297149356221, 814471993937855, 21281058718583873, 557930580979801755, 14669716953106628781, 386675596518995000191, 10214494658006725840897, 270345191656309313382475
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 13 2021

Keywords

Comments

In general, for k > 1, binomial(k*n, n) * hypergeom([(1-k)*n, -n], [-k*n], -1) ~ sqrt((k + (k^2 - k + 1) / sqrt(k^2 - 2*k + 2)) / (4*(k-1)*Pi*n)) * ((A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k-1)^(k-1))^n.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[6*n, n] * Hypergeometric2F1[-5*n, -n, -6*n, -1], {n,0,20}]

Formula

a(n) ~ sqrt((6 + 31/sqrt(26))/(20*Pi*n)) * (42671 + 8346*sqrt(26))^n / 5^(5*n).

A341476 Coefficients related to the asymptotics of generalized Delannoy numbers.

Original entry on oeis.org

1, 3, 22, 223, 2792, 42671, 761984, 15707707, 365122688, 9491746747, 271962399232, 8539383210711, 290937486190592, 10710312199270503, 422984587596455936, 17864076455770831219, 802450164859200372736, 38242916911507537149427, 1925477163696152909447168, 102213291475268656299164879
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 13 2021

Keywords

Examples

			Lim_{n->infinity} A001850(n)^(1/n) = (    3 +    2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = (   22 +   10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = (  223 +   70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 +  680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
		

Crossrefs

Formula

Lim_{n->infinity} (binomial(k*n, n) * hypergeom([(1-k)*n, -n], [-k*n], -1))^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k-1)^(k-1), for k>1.
Lim_{n->infinity} hypergeom([(1-k)*n, -n], [-k*n], -1)^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / k^k.
For k > 1, A341476(k)^2 - ((k-1)^2 + 1) * A341477(k)^2 = (-1)^k * (k-1)^(2*k-2).
Lim_{k->infinity} (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k * (k-1)^(k-1)) = 2*exp(1).
a(n) ~ n^n.

A341477 Coefficients related to the asymptotics of generalized Delannoy numbers.

Original entry on oeis.org

0, 2, 10, 70, 680, 8346, 125504, 2218350, 45335680, 1047314578, 27079557632, 772687787510, 24172386314240, 821114930966890, 30146801401143296, 1187943632192716894, 50068690149298438144, 2245175953053786221730, 106828553482726336102400, 5371204894269759411503910
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 13 2021

Keywords

Examples

			Lim_{n->infinity} A001850(n)^(1/n) = (    3 +    2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = (   22 +   10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = (  223 +   70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 +  680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
		

Crossrefs

Formula

Lim_{n->infinity} (binomial(k*n, n) * hypergeom([(1-k)*n, -n], [-k*n], -1))^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k-1)^(k-1), for k>1.
Lim_{n->infinity} hypergeom([(1-k)*n, -n], [-k*n], -1)^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / k^k.
For k > 1, A341476(k)^2 - ((k-1)^2 + 1) * A341477(k)^2 = (-1)^k * (k-1)^(2*k-2).
Lim_{k->infinity} (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k * (k-1)^(k-1)) = 2*exp(1).
a(n) ~ n^(n-1).

A099605 Triangle, read by rows, such that row n equals the inverse binomial transform of column n of the triangle A034870 of coefficients in successive powers of the trinomial (1+2*x+x^2), omitting leading zeros.

Original entry on oeis.org

1, 2, 2, 1, 5, 4, 4, 16, 20, 8, 1, 14, 41, 44, 16, 6, 50, 146, 198, 128, 32, 1, 27, 155, 377, 456, 272, 64, 8, 112, 560, 1408, 1992, 1616, 704, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 10, 210, 1572, 6084, 14002, 20330, 18880, 10912, 3584, 512, 1, 65
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2004

Keywords

Comments

Row sums form A099606, where A099606(n) = Pell(n+1)*2^[(n+1)/2]. Central coefficients of even-indexed rows form A026000, where A026000(n) = T(2n,n), where T = Delannoy triangle (A008288). Antidiagonal sums form A099607.

Examples

			Rows begin:
[1],
[2,2],
[1,5,4],
[4,16,20,8],
[1,14,41,44,16],
[6,50,146,198,128,32],
[1,27,155,377,456,272,64],
[8,112,560,1408,1992,1616,704,128],
[1,44,406,1652,3649,4712,3568,1472,256],
[10,210,1572,6084,14002,20330,18880,10912,3584,512],
[1,65,870,5202,17469,36365,48940,42800,23552,7424,1024],...
The binomial transform of row 2 equals column 2 of A034870:
BINOMIAL[1,5,4] = [1,6,15,28,45,66,91,120,153,...].
The binomial transform of row 3 equals column 3 of A034870:
BINOMIAL[4,16,20,8] = [4,20,56,120,220,364,560,...].
The binomial transform of row 4 equals column 4 of A034870:
BINOMIAL[1,14,41,44,16] = [1,15,70,210,495,1001,...].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[(1 + 2*(y + 1)*x - (y + 1)*x^2)/(1 - (2*y + 1)*(2*y + 2)*x^2 + (y + 1)^2*x^4), {x, 0, 49}, {y, 0, 49}], x],
      y] // Flatten (* G. C. Greubel, Apr 14 2017 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4)+x*O(x^n),n,x)+y*O(y^k),k,y)}

Formula

G.f.: (1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4). T(n, n) = 2^n.

A114164 Riordan array (1/(1-2x), x(1-x)/(1-2x)^2).

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 18, 8, 1, 16, 56, 41, 11, 1, 32, 160, 170, 73, 14, 1, 64, 432, 620, 377, 114, 17, 1, 128, 1120, 2072, 1666, 704, 164, 20, 1, 256, 2816, 6496, 6608, 3649, 1178, 223, 23, 1, 512, 6912, 19392, 24192, 16722, 7001, 1826, 291, 26, 1, 1024, 16640, 55680, 83232, 69876, 36365, 12235, 2675, 368, 29, 1
Offset: 0

Views

Author

Paul Barry, Nov 15 2005

Keywords

Comments

Row sums are A081567. Diagonal sums are A085810. Product of Pascal triangle A007318 and Morgan-Voyce triangle A085478.
Unsigned version of A123876. - Philippe Deléham, Oct 25 2007

Examples

			Triangle begins:
   1;
   2,   1;
   4,   5,   1;
   8,  18,   8,  1;
  16,  56,  41, 11,  1;
  32, 160, 170, 73, 14, 1;
  ...
		

Crossrefs

T(2n,n) gives A026000.

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n, j)*C(j+k, 2k);
T(n,k) = Sum_{j=0..n} C(n, k+j)*C(k, k-j)*2^(n-k-j);
T(n,k) = Sum_{j=0..n-k} C(n+k-j, n-k-j)*C(k, j)*(-1)^j*2^(n-k-j).
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 4*T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 2, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014

Extensions

More terms from Michel Marcus, Sep 09 2024

A181675 V(n,n^2), where V is the number of integer points in an n-dimensional sphere of Lee-radius n^2 centered at the origin.

Original entry on oeis.org

3, 41, 1159, 50049, 2908411, 212358985, 18665359119, 1917971421185, 225555471838387, 29871434052884841, 4398867465890529303, 712959801840558794625, 126115813138335816685995
Offset: 2

Views

Author

Antonio Campello, Nov 04 2010

Keywords

Comments

Since V(n,d) is symmetric, we have V(n,n^2) = V(n^2,n).

Crossrefs

V(n, n) = A001850, V(n, 2n) = A026000 and V(n, 3n) = A026001.

Programs

  • Mathematica
    Array[Sum[2^j*Binomial[#1, j] Binomial[#2, j], {j, 0, Min[#1, #2]}] & @@ {#, #^2} &, 13] (* Michael De Vlieger, Jul 05 2019 *)

Formula

V(n,d) = Sum_{j=0..min(n,d)} 2^j * binomial(n,j)*binomial(d,j).
a(n) ~ exp(n-2) * (2*n)^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Feb 13 2021

A357613 Triangle read by rows T(n, k) = binomial(2*n, k) * binomial(3*n - k, 2*n).

Original entry on oeis.org

1, 3, 2, 15, 20, 6, 84, 168, 105, 20, 495, 1320, 1260, 504, 70, 3003, 10010, 12870, 7920, 2310, 252, 18564, 74256, 120120, 100100, 45045, 10296, 924, 116280, 542640, 1058148, 1113840, 680680, 240240, 45045, 3432
Offset: 0

Views

Author

F. Chapoton, Oct 06 2022

Keywords

Comments

Each line should be the f-vector of a cellular complex. The sequence seems to give the coefficients in a binomial basis of the integer-valued polynomials (x+1)*(x+2)*...*(x+2*n)*(x+1)*(x+2)*...*(x+n)/(n!*(2n)!).
The precise expansion is (x+1)*(x+2)*...*(x+2*n)*(x+1)*(x+2)*...*(x+n)/(n!*(2*n)!) = Sum_{k = 0..n} (-1)^k*T(n,k)*binomial(x+3*n-k, 3*n-k), as can be verified using the WZ algorithm. For example, n = 3 gives (x+1)^2*(x+2)^2*(x+3)^2*(x+4)*(x+5)*(x+6)/(3!*6!) = 84*binomial(x+9, 9) - 168*binomial(x+8, 8) + 105*binomial(x+7, 7) - 20*binomial(x+6, 6). - Peter Bala, Jun 25 2023

Examples

			As a triangle of numbers, this starts with
  1;
  3, 2;
  15, 20, 6;
  84, 168, 105, 20;
  495, 1320, 1260, 504, 70.
Here is an example for n=1 as coefficients (up to sign) in the binomial basis of integer-valued polynomials:
(x+1)*(x+2)*(x+1)/2 = 3*binomial(x+3,3)-2*binomial(x+2,2).
		

Crossrefs

Row sums A026000. Cf. A000984, A005809 (k=0), A144485 (k=1), A033282, A110608, A243660.

Programs

  • Maple
    A357613 := proc(n,k)
        binomial(2*n,k)*binomial(3*n-k,2*n) ;
    end proc:
    seq(seq(A357613(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jul 06 2023
  • Mathematica
    Table[Binomial[2n,k]Binomial[3n-k,2n],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Oct 11 2023 *)
  • SageMath
    def a(n):
        return [binomial(2 * n, k) * binomial(3 * n - k, 2 * n)
                for k in range(n + 1)]

Formula

T(n,k) = binomial(2*n, k) * binomial(3*n - k, 2*n) for 0 <= k <= n
Showing 1-10 of 12 results. Next