cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A026378 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=1; also a(n) = T(2n-1,n-1).

Original entry on oeis.org

1, 4, 17, 75, 339, 1558, 7247, 34016, 160795, 764388, 3650571, 17501619, 84179877, 406020930, 1963073865, 9511333155, 46169418195, 224484046660, 1093097083475, 5329784874185, 26018549129545, 127154354598330, 622031993807565
Offset: 1

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to the line x=n-1 that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0) (left factors of 3-Motzkin steps). Example: a(3)=17 because we have UD, UU, 9 HH paths, 3 HU paths and 3 UH paths. - Emeric Deutsch, Jan 22 2004
Also a(n) = number of integer strings s(0), ..., s(n) counted by array U in A026386 that have s(n)=1; a(n) = U(2n-1, n-1).
The Hankel transform of [1,1,4,17,75,339,1558,...] is [1,3,8,21,55,144,377,...] (see A001906). - Philippe Deléham, Apr 13 2007
Number of peaks in all skew Dyck paths of semilength n. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. Example: a(2)=4 because in the 3 (=A002212(2)) skew Dyck paths (UD)(UD), U(UD)D and U(UD)L we have altogether 4 peaks (shown between parentheses). - Emeric Deutsch, Jul 25 2007
Hankel transform of this sequence gives A000012 = [1,1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
5th binomial transform of (-1)^n*A000108. - Paul Barry, Jan 13 2009
From Gary W. Adamson, May 17 2009: (Start)
Convolved with A007317, (1, 2, 5, 15, 51, ...) = A026376: (1, 6, 30, 144, ...)
Equals A026375, (1, 3, 11, 45, 195, ...) convolved with A002212 prefaced with
a 1: (1, 1, 3, 10, 36, 137, ...). (End)
From Tom Copeland, Nov 09 2014: (Start)
The array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interpolating o.g.f. [1-sqrt(1-4x/(1+(1-t)x))]/2 and inverse x(1-x)/[1+(t-1)x(1-x)]. See A091867 for more info on this family. Here the interpolation is t=-4 (mod signs in the results).
Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1-5x))]/2 = -C[P(-x,5)].
Inverse O.g.f: Ginv(x) = x*(1+x)/[1 + 5x*(1+x)] = -P(Cinv(-x),-5) (signed A039717). (End)

Crossrefs

Half the values of A026387. Bisection of A026380 and A026392.

Programs

  • Maple
    a := n -> (-1)^n*simplify(GegenbauerC(n-2,-n+1,3/2) - GegenbauerC(n-1,-n+1,3/2)): seq(a(n), n=1..23); # Peter Luschny, May 13 2016
  • Mathematica
    CoefficientList[Series[(1/2)/(5*x^2-x)*(1-5*x-(1-6*x+5*x^2)^(1/2)),{x,0,30}],x] (* Vincenzo Librandi, May 13 2012 *)
    Table[Hypergeometric2F1[3/2, 1-n, 2, -4], {n, 1, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)

Formula

G.f.: (1/2)/(5*x^2-x)*(1-5*x-(1-6*x+5*x^2)^(1/2)). E.g.f.: exp(3*x)*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Vladeta Jovovic, Oct 03 2003
G.f.: [(1-z)/sqrt(1-6z+5z^2)-1]/2 = z + 4z^2 + 17z^3 + ... - Emeric Deutsch, Jan 22 2004
a(n) = coefficient of t^n in (1+t)(1+3t+t^2)^(n-1). - Emeric Deutsch, Jan 30 2004
a(n) = A026380(2n-2). - Emeric Deutsch, Feb 18 2004
a(n) = [2(3n-2)a(n-1) - 5(n-2)a(n-2)]/n for n>=2; a(0)=0, a(1)=1. - Emeric Deutsch, Mar 18 2004
a(n+1) = sum(k=0, n, binomial(n, k)*sum(i=0, k, binomial(k+i, i))). - Benoit Cloitre, Aug 06 2004
a(n+1) = sum(k=0, n, binomial(n, k)*binomial(2*k+1, k+1)). - Benoit Cloitre, Aug 06 2004
a(n) = Sum(k*A126182(n-1,k-1),k=1..n). - Emeric Deutsch, Jul 25 2007
From Paul Barry, Jan 13 2009: (Start)
G.f.: (1/(1-5x))*c(-x/(1-5x)), c(x) the g.f. of A000108;
a(n) = sum{k=0..n, C(n,k)*(-1)^k*A000108(k)*5^(n-k)} (offset 0). (End)
G.f. 1/(1 - 3x - x(1 - x)/(1 - x - x(1 - x)/(1 - x - x(1 - x)/(1 - x - x(1 - x)/(1...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Jul 02 2010
a(n) ~ 5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 08 2012
a(n) = hypergeom([3/2, 1-n], [2], -4). - Vladimir Reshetnikov, Apr 25 2016
a(n) = (-1)^n*(GegenbauerC(n-2,-n+1,3/2) - GegenbauerC(n-1,-n+1,3/2)). - Peter Luschny, May 13 2016

A026376 a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).

Original entry on oeis.org

1, 6, 30, 144, 685, 3258, 15533, 74280, 356283, 1713690, 8263596, 39938616, 193419915, 938430990, 4560542550, 22195961280, 108171753355, 527816696850, 2578310320610, 12607504827600, 61706212037295, 302275142049870, 1481908332595625, 7270432009471224
Offset: 1

Views

Author

Keywords

Comments

Number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis) from (0,0) to (2n+2,0), with exactly one peak at an even level. E.g., a(2)=6 because we have UUDDH, HUUDD, UDUUDD, UUDDUD, UUDHD and UHUDD. - Emeric Deutsch, Dec 28 2003
Number of left steps in all skew Dyck paths of semilength n+1. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. Example: a(2)=6 because in the 10 (=A002212(3)) skew Dyck paths of semilength 3 ( namely UDUUDL, UUUDLD, UUDUDL, UUUDDL, UUUDLL and five Dyck paths that have no left steps) we have altogether 6 left steps. - Emeric Deutsch, Aug 05 2007
From Gary W. Adamson, May 17 2009: (Start)
Equals A026378 (1, 4, 17, 75, ...) convolved with A007317 (1, 2, 5, 15, 51, ...).
Equals A081671 (1, 3, 11, 45, ...) convolved with A002212 (1, 3, 10, 36, 137, ...).
(End)

Crossrefs

Programs

  • Maple
    a := n -> simplify(GegenbauerC(n-1, -n, -3/2)):
    seq(a(n), n=1..24); # Peter Luschny, May 09 2016
  • Mathematica
    Rest[CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1+3*x+x^2)^n,n-1))
    
  • Sage
    A026376 = lambda n : n*hypergeometric([1, 3/2, 1-n], [1, 3], -4)
    [round(A026376(n).n(100)) for n in (1..24)] # Peter Luschny, Sep 16 2014
    
  • Sage
    # Recurrence:
    def A026376():
        x, y, n = 1, 1, 1
        while True:
            x, y = y, ((6*n + 3)*y - (5*n - 5)*x) / (n + 2)
            yield n*x
            n += 1
    a = A026376()
    [next(a) for i in (1..24)] # Peter Luschny, Sep 16 2014

Formula

E.g.f.: exp(3x)*I_1(2x), where I_1 is Bessel function. - Michael Somos, Sep 09 2002
G.f.: (1 - 3*z - t)/(2*z*t) where t = sqrt(1-6*z+5*z^2). - Emeric Deutsch, May 25 2003
a(n) = [t^(n+1)](1+3t+t^2)^n. a := n -> Sum_{j=ceiling((n+1)/2)..n} 3^(2j-n-1)*binomial(n, j)*binomial(j, n+1-j). - Emeric Deutsch, Jan 30 2004
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+1). - Paul Barry, Sep 20 2004
a(n) = n*A002212(n). - Emeric Deutsch, Aug 05 2007
D-finite with recurrence (n+1)*a(n) - 9*n*a(n-1) + (23*n-27)*a(n-2) + 15*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 02 2012
a(n) ~ 5^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = n*hypergeometric([1, 3/2, 1-n],[1, 3],-4). - Peter Luschny, Sep 16 2014
a(n) = GegenbauerC(n-1, -n, -3/2). - Peter Luschny, May 09 2016

A026377 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=4; also a(n) = T(2n,n-2).

Original entry on oeis.org

1, 9, 58, 330, 1770, 9198, 46928, 236736, 1185645, 5909805, 29362806, 145570230, 720606705, 3563543025, 17610412600, 86989143480, 429579843435, 2121099312195, 10472653252550, 51708363376950, 255326054688320, 1260886172311524, 6227515552731528, 30762417293645400
Offset: 2

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (2n,4), using steps U=(1,1), D=(1,-1) and at even levels(zero, positive and negative) also H=(2,0). Example: a(3)=9 because we have UUUUUD, UUUUDU, UUUDUU, UUDUUU, UDUUUU, DUUUUU, HUUUU, UUHUU and UUUUH. - Emeric Deutsch, Jan 30 2004

Crossrefs

Cf. A026374.

Programs

  • Maple
    series( (3*x-1+(1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2), x=0, 30); # Mark van Hoeij, Apr 18 2013
  • Mathematica
    CoefficientList[Series[(3*x-1+(1-6*x+7*x^2)/Sqrt[5*x^2-6*x+1])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 07 2013 *)
  • PARI
    x='x+O('x^66); Vec((3*x-1+(1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2)) /* Joerg Arndt, Apr 19 2013 */

Formula

From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^(n+2)](1+3t+t^2)^n.
a(n) = Sum_{j=ceiling((n+2)/2)..n} (3^(2j-n-2)*binomial(n, j)*binomial(j, n+2-j)). (End)
From Paul Barry, Sep 20 2004: (Start)
E.g.f.: exp(3x) * BesselI(2, 2x).
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+2). (End)
Conjecture: n*(n+4)*a(n) - 3*(n+2)*(2*n+3)*a(n-1) + 5*(n+2)*(n+1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
G.f.: (3*x - 1 + (1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2). - Mark van Hoeij, Apr 18 2013
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 07 2013
Assuming offset 0: a(n) = C(2*n+4,n)*hypergeom([-n,-n-4],[-3/2-n],-1/4). - Peter Luschny, May 09 2016

A026385 Sum{T(n-k,k)}, 0<=k<=[ n/2 ], where T is the array in A026374.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 20, 33, 59, 104, 178, 314, 549, 952, 1669, 2913, 5074, 8872, 15482, 27007, 47172, 82325, 143675, 250848, 437822, 764198, 1334041, 2328512, 4064457, 7094833, 12384034, 21616716, 37732990, 65863651
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    I:=[1,1,2,4]; [n le 4 select I[n] else Self(n-2)+3*Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 19 2014
  • Mathematica
    LinearRecurrence[{0,1,3,1},{1,1,2,4},40] (* Harvey P. Dale, Jun 18 2014 *)
    CoefficientList[Series[(1 + x + x^2)/(1 - x^2 - 3 x^3 - x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2014 *)

Formula

G.f.: (1+x+x^2)/(1-x^2-3x^3-x^4). - Ralf Stephan, Apr 30 2004
a(n) = a(n-2) + 3*a(n-3) + a(n-4) for n>3. - Vincenzo Librandi, Jun 19 2014

A026379 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=3; also a(n) = T(2n-1,n-2).

Original entry on oeis.org

1, 7, 39, 202, 1015, 5028, 24731, 121208, 593019, 2899335, 14173401, 69301422, 338990145, 1659037695, 8124085575, 39806373880, 195160896835, 957396540285, 4699409632805, 23080158080150, 113414575414245, 557601196738190
Offset: 2

Views

Author

Keywords

Crossrefs

Partial sums of A034942.

Programs

Formula

a(n) = [t^(n+1)]{(1+t)(1+3t+t^2)^(n-1)}. - Emeric Deutsch, Jan 30 2004
G.f.: -1/x+2-2*x^2/(10*x^2+sqrt(1-5*x)*sqrt(1-x)*(4*x-1)-7*x+1). - Vladimir Kruchinin, Aug 11 2015

A026380 a(n) = T(n,[ n/2 ]), where T is the array in A026374.

Original entry on oeis.org

1, 3, 4, 11, 17, 45, 75, 195, 339, 873, 1558, 3989, 7247, 18483, 34016, 86515, 160795, 408105, 764388, 1936881, 3650571, 9238023, 17501619, 44241261, 84179877, 212601015, 406020930, 1024642875, 1963073865, 4950790605
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(2n)=A026378(n+1), a(2n-1)=A026375(n). - Emeric Deutsch, Feb 18 2004
a(2n) = A026378(2n+1), a(2n+1) = A026375(n+1).
Davenport et al. give a g.f.

A026381 T(n,n-2), where T is the array in A026374.

Original entry on oeis.org

1, 4, 11, 17, 30, 39, 58, 70, 95, 110, 141, 159, 196, 217, 260, 284, 333, 360, 415, 445, 506, 539, 606, 642, 715, 754, 833, 875, 960, 1005, 1096, 1144, 1241, 1292, 1395, 1449, 1558, 1615, 1730, 1790, 1911, 1974, 2101, 2167, 2300
Offset: 2

Views

Author

Keywords

Programs

  • Haskell
    a026381 = flip a026374 2  -- Reinhard Zumkeller, Feb 22 2014
  • Mathematica
    Drop[CoefficientList[Series[z^2(1+3z+5z^2)/((1-z)^3(1+z)^2),{z,0,50}],z],2] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,4,11,17,30},50] (* Harvey P. Dale, Dec 31 2021 *)

Formula

G.f.: z^2*(1+3z+5z^2)/[(1-z)^3*(1+z)^2]. - Emeric Deutsch, Jan 25 2004

A026382 a(n) = T(n,n-3), where T is the array in A026374.

Original entry on oeis.org

1, 6, 17, 45, 75, 144, 202, 330, 425, 630, 771, 1071, 1267, 1680, 1940, 2484, 2817, 3510, 3925, 4785, 5291, 6336, 6942, 8190, 8905, 10374, 11207, 12915, 13875, 15840, 16936, 19176, 20417, 22950, 24345, 27189, 28747, 31920
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A026374.

Programs

Formula

G.f.: z^3*(1+5z+8z^2+13z^3)/[(1-z)^4*(1+z)^3]. - Emeric Deutsch, Jan 25 2004

A026384 a(n) = Sum_{j=0..i, i=0..n} T(i,j), where T is the array in A026374.

Original entry on oeis.org

1, 3, 8, 18, 43, 93, 218, 468, 1093, 2343, 5468, 11718, 27343, 58593, 136718, 292968, 683593, 1464843, 3417968, 7324218, 17089843, 36621093, 85449218, 183105468, 427246093, 915527343, 2136230468, 4577636718, 10681152343, 22888183593, 53405761718
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A026383. Number of lattice paths from (0,0) that do not go to right of the line x=n, using the steps U=(1,1), D=(1,-1) and, at levels ...,-4,-2,0,2,4,..., also H=(2,0). Example: a(2)=8 because we have the empty path, U, D, UU, UD, DD, DU and H. - Emeric Deutsch, Feb 18 2004

Crossrefs

Cf. A026383.

Programs

  • Magma
    I:=[1,3,8]; [n le 3 select I[n] else Self(n-1)+5*Self(n-2)-5*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Aug 09 2017
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=5*a[n-2]+3 od: seq(a[n], n=1..29); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    CoefficientList[Series[(1 + 2 x) / ((1 - x) (1 - 5 x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 09 2017 *)
    LinearRecurrence[{1,5,-5},{1,3,8},40] (* Harvey P. Dale, May 31 2023 *)
  • PARI
    Vec((2*x + 1)/(5*x^3 - 5*x^2 - x + 1) + O(x^40)) \\ Colin Barker, Nov 25 2016
    

Formula

G.f.: (1+2*x) / ((1-x)*(1-5*x^2)). - Ralf Stephan, Apr 30 2004
From Colin Barker, Nov 25 2016: (Start)
a(n) = (7*5^(n/2) - 3)/4 for n even.
a(n) = 3*(5^((n+1)/2) - 1)/4 for n odd.
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) for n>2.
(End)

A026950 a(n) = Sum_{k=0..n} (k+1) * T(n,k), with T given by A026374.

Original entry on oeis.org

1, 3, 10, 25, 75, 175, 500, 1125, 3125, 6875, 18750, 40625, 109375, 234375, 625000, 1328125, 3515625, 7421875, 19531250, 41015625, 107421875, 224609375, 585937500, 1220703125, 3173828125, 6591796875, 17089843750, 35400390625, 91552734375, 189208984375, 488281250000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026374.

Programs

  • PARI
    a(n) = (n + 2) * (7 + 3*(-1)^n) * 5^((n-1)\2) / 4 \\ Andrew Howroyd, Dec 27 2024

Formula

a(n) = (n + 2) * (7 + 3*(-1)^n) * 5^floor((n-1)/2) / 4.
From Colin Barker, Oct 13 2012: (Start)
a(n) = 10*a(n-2) - 25*a(n-4).
G.f.: -(5*x^3-3*x-1)/(5*x^2-1)^2. (End)

Extensions

a(28) onwards from Andrew Howroyd, Dec 27 2024
Showing 1-10 of 17 results. Next