cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A026375 a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).

Original entry on oeis.org

1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - Emeric Deutsch, Jan 30 2004
Largest coefficient of (1+3*x+x^2)^n; row sums of triangle in A124733. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - N-E. Fahssi, Feb 05 2008
Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - Gary W. Adamson, May 17 2009
Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - Gheorghe Coserea, Jul 29 2018
a(n) == 0 (mod 3) if and only if n is in A081606. - Fabio Visonà, Aug 03 2023

Examples

			G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
		

Crossrefs

Column 3 of A292627. Column 1 of A110165. Central column of A272866.
First differences are in A085362. Bisection of A026380.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # Muniru A Asiru, Jul 29 2018
  • Haskell
    a026375 n = a026374 (2 * n) n  -- Reinhard Zumkeller, Feb 22 2014
    
  • Maple
    seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    a := n -> simplify(GegenbauerC(n, -n, -3/2)):
    seq(a(n), n=0..22); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    (* From Michael Somos, May 11 2014: (Start) *)
    a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
    a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
    a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
    (* (End) *)
  • Maxima
    A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
    makelist(A026375(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
    
  • PARI
    a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
    

Formula

Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - Karol A. Penson, Apr 20 2001
This sequence is the binomial transform of A000984. - John W. Layman, Aug 11 2000; proved by Emeric Deutsch, Oct 26 2002
E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 17 2002
G.f.: 1/sqrt(1-6*x+5*x^2). - Emeric Deutsch, Oct 26 2002
D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - Emeric Deutsch, Jan 24 2004
From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^n](1+3*t+t^2)^n;
a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
a(n) = A026380(2*n-1) (n>0). - Emeric Deutsch, Feb 18 2004
G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - Paul Barry, Jan 06 2009
a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - Paul D. Hanna, Jul 18 2009
a(n) = sum of squares of coefficients of (1-x-x^2)^n. - Joerg Arndt, Jul 06 2011
a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - Peter Luschny, Sep 12 2011
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 11 2014
a(n) = GegenbauerC(n, -n, -3/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

Extensions

Definition simplified by N. J. A. Sloane, Feb 16 2012

A026378 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=1; also a(n) = T(2n-1,n-1).

Original entry on oeis.org

1, 4, 17, 75, 339, 1558, 7247, 34016, 160795, 764388, 3650571, 17501619, 84179877, 406020930, 1963073865, 9511333155, 46169418195, 224484046660, 1093097083475, 5329784874185, 26018549129545, 127154354598330, 622031993807565
Offset: 1

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to the line x=n-1 that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0) (left factors of 3-Motzkin steps). Example: a(3)=17 because we have UD, UU, 9 HH paths, 3 HU paths and 3 UH paths. - Emeric Deutsch, Jan 22 2004
Also a(n) = number of integer strings s(0), ..., s(n) counted by array U in A026386 that have s(n)=1; a(n) = U(2n-1, n-1).
The Hankel transform of [1,1,4,17,75,339,1558,...] is [1,3,8,21,55,144,377,...] (see A001906). - Philippe Deléham, Apr 13 2007
Number of peaks in all skew Dyck paths of semilength n. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. Example: a(2)=4 because in the 3 (=A002212(2)) skew Dyck paths (UD)(UD), U(UD)D and U(UD)L we have altogether 4 peaks (shown between parentheses). - Emeric Deutsch, Jul 25 2007
Hankel transform of this sequence gives A000012 = [1,1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
5th binomial transform of (-1)^n*A000108. - Paul Barry, Jan 13 2009
From Gary W. Adamson, May 17 2009: (Start)
Convolved with A007317, (1, 2, 5, 15, 51, ...) = A026376: (1, 6, 30, 144, ...)
Equals A026375, (1, 3, 11, 45, 195, ...) convolved with A002212 prefaced with
a 1: (1, 1, 3, 10, 36, 137, ...). (End)
From Tom Copeland, Nov 09 2014: (Start)
The array belongs to an interpolated family of arrays associated to the Catalan A000108 (t=1), and Riordan, or Motzkin sums A005043 (t=0), with the interpolating o.g.f. [1-sqrt(1-4x/(1+(1-t)x))]/2 and inverse x(1-x)/[1+(t-1)x(1-x)]. See A091867 for more info on this family. Here the interpolation is t=-4 (mod signs in the results).
Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1+t*x) with inverse P(x,-t).
O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1-5x))]/2 = -C[P(-x,5)].
Inverse O.g.f: Ginv(x) = x*(1+x)/[1 + 5x*(1+x)] = -P(Cinv(-x),-5) (signed A039717). (End)

Crossrefs

Half the values of A026387. Bisection of A026380 and A026392.

Programs

  • Maple
    a := n -> (-1)^n*simplify(GegenbauerC(n-2,-n+1,3/2) - GegenbauerC(n-1,-n+1,3/2)): seq(a(n), n=1..23); # Peter Luschny, May 13 2016
  • Mathematica
    CoefficientList[Series[(1/2)/(5*x^2-x)*(1-5*x-(1-6*x+5*x^2)^(1/2)),{x,0,30}],x] (* Vincenzo Librandi, May 13 2012 *)
    Table[Hypergeometric2F1[3/2, 1-n, 2, -4], {n, 1, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)

Formula

G.f.: (1/2)/(5*x^2-x)*(1-5*x-(1-6*x+5*x^2)^(1/2)). E.g.f.: exp(3*x)*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Vladeta Jovovic, Oct 03 2003
G.f.: [(1-z)/sqrt(1-6z+5z^2)-1]/2 = z + 4z^2 + 17z^3 + ... - Emeric Deutsch, Jan 22 2004
a(n) = coefficient of t^n in (1+t)(1+3t+t^2)^(n-1). - Emeric Deutsch, Jan 30 2004
a(n) = A026380(2n-2). - Emeric Deutsch, Feb 18 2004
a(n) = [2(3n-2)a(n-1) - 5(n-2)a(n-2)]/n for n>=2; a(0)=0, a(1)=1. - Emeric Deutsch, Mar 18 2004
a(n+1) = sum(k=0, n, binomial(n, k)*sum(i=0, k, binomial(k+i, i))). - Benoit Cloitre, Aug 06 2004
a(n+1) = sum(k=0, n, binomial(n, k)*binomial(2*k+1, k+1)). - Benoit Cloitre, Aug 06 2004
a(n) = Sum(k*A126182(n-1,k-1),k=1..n). - Emeric Deutsch, Jul 25 2007
From Paul Barry, Jan 13 2009: (Start)
G.f.: (1/(1-5x))*c(-x/(1-5x)), c(x) the g.f. of A000108;
a(n) = sum{k=0..n, C(n,k)*(-1)^k*A000108(k)*5^(n-k)} (offset 0). (End)
G.f. 1/(1 - 3x - x(1 - x)/(1 - x - x(1 - x)/(1 - x - x(1 - x)/(1 - x - x(1 - x)/(1...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Jul 02 2010
a(n) ~ 5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 08 2012
a(n) = hypergeom([3/2, 1-n], [2], -4). - Vladimir Reshetnikov, Apr 25 2016
a(n) = (-1)^n*(GegenbauerC(n-2,-n+1,3/2) - GegenbauerC(n-1,-n+1,3/2)). - Peter Luschny, May 13 2016
Showing 1-2 of 2 results.