A053539
a(n) = n * 8^(n-1).
Original entry on oeis.org
0, 1, 16, 192, 2048, 20480, 196608, 1835008, 16777216, 150994944, 1342177280, 11811160064, 103079215104, 893353197568, 7696581394432, 65970697666560, 562949953421312, 4785074604081152, 40532396646334464, 342273571680157696, 2882303761517117440, 24211351596743786496
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. R. Ashrafi, B. Manoochehrian, and H. Yousefi-Azari, On Szeged polynomial of a graph, Bull. Iranian Math. Soc., 33, 2007, 37-46. - _Emeric Deutsch_, Aug 06 2014
- Zbigniew R. Bogdanowicz, The number of spanning trees in a superprism, Discrete Math. Lett. 13 (2024) 66-73. See Theorem 3.1.
- Frank Ellermann, Illustration of binomial transforms.
- Index entries for linear recurrences with constant coefficients, signature (16,-64).
-
List([0..20], n-> n*8^(n-1)); # G. C. Greubel, May 16 2019
-
[n*8^(n-1): n in [0..20]]; // Vincenzo Librandi, Feb 09 2011
-
a := proc(n) option remember; if n<2 then n else 16*a(n-1)-64*a(n-2) end if end proc: seq(a(n), n = 0 .. 20); # Emeric Deutsch, Aug 06 2014
-
Table[n 8^(n-1),{n,0,20}] (* or *) LinearRecurrence[{16,-64},{0,1},20] (* Harvey P. Dale, Feb 01 2017 *)
-
a(n) = n*8^(n-1); \\ Joerg Arndt, Aug 07 2014
-
[n*8^(n-1) for n in (0..20)] # G. C. Greubel, May 16 2019
A212701
Main transitions in systems of n particles with spin 3.
Original entry on oeis.org
6, 84, 882, 8232, 72030, 605052, 4941258, 39530064, 311299254, 2421216420, 18643366434, 142367525496, 1079620401678, 8138676874188, 61040076556410, 455765904954528, 3389758918099302, 25124095510618356, 185639150161791186, 1367867422244777160, 10053825553499112126
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212702,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 8, 9, 10).
-
LinearRecurrence[{14,-49},{6,84},20] (* Harvey P. Dale, Aug 02 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212701.txt", n, " ", mtrans(n, 7)))
-
Vec(6*x/(7*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
A218017
Triangle, read by rows, where T(n,k) = k!*C(n, k)*7^(n-k) for n>=0, k=0..n.
Original entry on oeis.org
1, 7, 1, 49, 14, 2, 343, 147, 42, 6, 2401, 1372, 588, 168, 24, 16807, 12005, 6860, 2940, 840, 120, 117649, 100842, 72030, 41160, 17640, 5040, 720, 823543, 823543, 705894, 504210, 288120, 123480, 35280, 5040, 5764801, 6588344, 6588344, 5647152, 4033680, 2304960, 987840, 282240, 40320
Offset: 0
Triangle begins:
1;
7, 1;
49, 14, 2;
343, 147, 42, 6;
2401, 1372, 588, 168, 24;
16807, 12005, 6860, 2940, 840, 120;
117649, 100842, 72030, 41160, 17640, 5040, 720;
823543, 823543, 705894, 504210, 288120, 123480, 35280, 5040; etc.
-
[Factorial(n)/Factorial(n-k)*7^(n-k): k in [0..n], n in [0..10]];
-
Flatten[Table[n!/(n-k)!*7^(n-k), {n, 0, 10}, {k, 0, n}]]
A104002
Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns that start with 1 except one fixed pattern and containing it exactly once.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 12, 6, 1, 5, 32, 27, 8, 1, 6, 80, 108, 48, 10, 1, 7, 192, 405, 256, 75, 12, 1, 8, 448, 1458, 1280, 500, 108, 14, 1, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 10, 2304, 17496, 28672, 18750, 6480, 1372, 192, 18, 1, 11, 5120, 59049, 131072
Offset: 2
Triangle begins:
1;
2, 1;
3, 4, 1;
4, 12, 6, 1;
5, 32, 27, 8, 1;
6, 80, 108, 48, 10, 1;
7, 192, 405, 256, 75, 12, 1;
8, 448, 1458, 1280, 500, 108, 14, 1;
- Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2 <= n <= 150).
- T. Mansour, Permutations containing and avoiding certain patterns, arXiv:math/9911243 [math.CO], 1999-2000.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Cf. Left-edge columns include
A001787,
A027471,
A002697,
A053464,
A053469,
A027473,
A053539,
A053540,
A053541,
A081127,
A081128.
-
Table[(n - k + 1) (k - 1)^(n - k), {n, 2, 12}, {k, 2, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)
A230539
a(n) = 3*n*2^(3*n-1).
Original entry on oeis.org
0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0
-
[3*n*2^(3*n-1): n in [0..20]];
-
A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
-
Table[3 n 2^(3 n - 1), {n,0,20}]
LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
-
a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013
A230540
a(n) = 2*n*3^(2*n-1).
Original entry on oeis.org
0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0
-
[2*n*3^(2*n-1): n in [0..20]];
-
Table[2 n 3^(2 n - 1), {n, 0, 20}]
-
a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013
A317014
Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 7, 49, 1, 343, 14, 2401, 147, 1, 16807, 1372, 21, 117649, 12005, 294, 1, 823543, 100842, 3430, 28, 5764801, 823543, 36015, 490, 1, 40353607, 6588344, 352947, 6860, 35, 282475249, 51883209, 3294172, 84035, 735, 1, 1977326743, 403536070, 29647548, 941192, 12005, 42
Offset: 0
Triangle begins:
1;
7;
49, 1;
343, 14;
2401, 147, 1;
16807, 1372, 21;
117649, 12005, 294, 1;
823543, 100842, 3430, 28;
5764801, 823543, 36015, 490, 1;
40353607, 6588344, 352947, 6860, 35;
282475249, 51883209, 3294172, 84035, 735, 1;
1977326743, 403536070, 29647548, 941192, 12005, 42;
13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1;
96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49;
678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A320531
T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, 14, ... A005843
0, 3, 12, 27, 48, 75, 108, 147, ... A033428
0, 4, 32, 108, 256, 500, 864, 1372, ... A033430
0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792
0, 6, 192, 1458, 6144, 18750, 46656, 100842, ...
0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Showing 1-8 of 8 results.
Comments