A027650
Poly-Bernoulli numbers B_n^(k) with k=-3.
Original entry on oeis.org
1, 8, 46, 230, 1066, 4718, 20266, 85310, 354106, 1455278, 5938186, 24104990, 97478746, 393095438, 1581931306, 6356390270, 25511588986, 102304505198, 409992599626, 1642294397150, 6576150108826, 26325519044558, 105364834103146, 421647614381630, 1687155299822266
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5.
- Ken Kamano, Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers, J. Int. Seq. 13 (2010), 10.5.2.
- Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- Index entries for sequences related to Bernoulli numbers.
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
[6*4^n-6*3^n+2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
a:= (n, k) -> (-1)^n*sum((-1)^j*j!*Stirling2(n, j)/(j+1)^k, j=0..n);
seq(a(n, -3), n = 0..30);
-
Table[6*4^n-6*3^n+2^n, {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
-
Vec((1-x)/((1-2*x)*(1-3*x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015
-
[2^n -6*3^n +6*4^n for n in (0..30)] # G. C. Greubel, Aug 02 2022
A027651
Poly-Bernoulli numbers B_n^(k) with k=-4.
Original entry on oeis.org
1, 16, 146, 1066, 6902, 41506, 237686, 1315666, 7107302, 37712866, 197451926, 1023358066, 5262831302, 26903268226, 136887643766, 693968021266, 3508093140902, 17693879415586, 89084256837206, 447884338361266, 2249284754708102, 11285908565322946, 56587579617416246
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5.
- Ken Kamano, Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers, J. Int. Seq. 13 (2010), 10.5.2.
- Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Hiroyuki Komaki, Relations between Multi-Poly-Bernoulli numbers and Poly-Bernoulli numbers of negative index, arXiv:1503.04933 [math.NT], 2015.
- Index entries for sequences related to Bernoulli numbers.
- Index entries for linear recurrences with constant coefficients, signature (14,-71,154,-120).
-
[24*5^n-36*4^n+14*3^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
a:= (n, k) -> (-1)^n*sum((-1)^j*j!*Stirling2(n,j)/(j+1)^k, j=0..n);
seq(a(n, -4), n=0..30);
-
Table[24*5^n -36*4^n +14*3^n -2^n, {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
LinearRecurrence[{14,-71,154,-120},{1,16,146,1066},30] (* Harvey P. Dale, Nov 20 2019 *)
-
Vec((1+4*x)*((1-x)^2)/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015
-
[24*5^n -36*4^n +14*3^n -2^n for n in (0..30)] # G. C. Greubel, Aug 02 2022
A027644
Denominators of poly-Bernoulli numbers B_n^(k) with k=2.
Original entry on oeis.org
1, 4, 36, 24, 450, 40, 2205, 168, 350, 120, 38115, 88, 40990950, 10920, 5005, 24, 130180050, 136, 1935088155, 3192, 177827650, 1320, 1539340803, 184, 304521767550, 10920, 37182145, 24, 2814316555050, 1160
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- K. Imatomi, M. Kaneko, E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
- M. Kaneko, Poly-Bernoulli numbers
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Index entries for sequences related to Bernoulli numbers.
-
A027644:= func< n,k | Denominator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
[A027644(n,2): n in [0..30]]; // G. C. Greubel, Aug 02 2022
-
a := n -> denom(add((-1)^(n-m)*m!*Stirling2(n, m)/(m+1)^2, m=0..n)):
seq(a(n), n = 0..29);
-
f[n_]:= (-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}];
Table[Denominator[f[n]], {n, 0, 30}] (* Robert G. Wilson v, Oct 28 2004 *)
-
def A027644(n,k): return denominator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n,j)/(j+1)^k for j in (0..n)) )
[A027644(n,2) for n in (0..30)] # G. C. Greubel, Aug 02 2022
A027648
Denominators of poly-Bernoulli numbers B_n^(k) with k=4.
Original entry on oeis.org
1, 16, 1296, 3456, 3240000, 144000, 1555848000, 59270400, 5000940000, 1587600, 9762501672000, 11269843200, 221794053611130000, 39390663312000, 5849513501832000, 519437318400, 407131014322092060000, 1063331477208000
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..807
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
- M. Kaneko, Poly-Bernoulli numbers
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Index entries for sequences related to Bernoulli numbers.
-
A027648:= func< n,k | Denominator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
[A027648(n,4): n in [0..20]]; // G. C. Greubel, Aug 02 2022
-
a:= (n, k) -> denom( (-1)^n*add((-1)^m*m!*Stirling2(n, m)/(m+1)^k, m = 0..n) );
seq(a(n, 4), n = 0..30);
-
With[{k = 4}, Table[Denominator@ Sum[((-1)^(m + n))*m!*StirlingS2[n, m]*(m + 1)^(-k), {m, 0, n}], {n, 0, 17}]] (* Michael De Vlieger, Mar 18 2017 *)
-
def A027648(n,k): return denominator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n,j)/(j+1)^k for j in (0..n)) )
[A027648(n,4) for n in (0..20)] # G. C. Greubel, Aug 02 2022
A283926
Denominators of poly-Bernoulli numbers B_n^(k) with k=7.
Original entry on oeis.org
1, 128, 279936, 5971968, 699840000000, 93312000000, 115269666624000000, 35129803161600000, 160060165655040000000, 1016255020032000000, 103970660613603049728000000, 240047701272387993600000, 41516393959179372527058885120000000
Offset: 0
B_0^(7) = 1, B_1^(7) = 1/128, B_2^(7) = -1931/279936, B_3^(7) = 32459/5971968, ...
-
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-7), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
-
B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-7));
for(n=0, 15, print1(numerator(B(n)),", ")) \\ Indranil Ghosh, Mar 18 2017
A120282
Numerator of the coefficients of k^2 term at Sum[Sum[(i-j)^(2n),{i,1,k}],{j,1,k}].
Original entry on oeis.org
-1, 1, -5, 7, -15, 7601, -91, 3617, -745739, 3317609, -5981591, 5436374093, -213827575, 213745149261, -249859397004145, 238988952277727, -28354566442037, 26315271553053477373, -108409774812137683, 3394075340453838586663
Offset: 1
-
Numerator[Coefficient[Table[Sum[Sum[(i-j)^(2n),{i,1,k}],{j,1,k}],{n,1,20}],k,2]]
A120283
Numerator of the coefficients of the k^2 terms of Sum[Sum[(i+j)^(2n),{i,1,k}],{j,1,k}].
Original entry on oeis.org
5, 1, -5, 7, -15, 7601, -91, 3617, -745739, 3317609, -5981591, 5436374093, -213827575, 213745149261, -249859397004145, 238988952277727, -28354566442037, 26315271553053477373, -108409774812137683, 3394075340453838586663
Offset: 1
-
Numerator[Coefficient[Table[Sum[Sum[(i+j)^(2n),{i,1,k}],{j,1,k}],{n,1,20}],k,2]]
A160035
Clausen-normalized numerators of the Bernoulli numbers of order 2.
Original entry on oeis.org
1, 0, -1, 0, 3, 0, -5, 0, 7, 0, -45, 0, 7601, 0, -91, 0, 54255, 0, -745739, 0, 3317609, 0, -17944773, 0, 5436374093, 0, -213827575, 0, 641235447783, 0, -249859397004145, 0, 238988952277727, 0, -85063699326111, 0, 921034504356871708055, 0, -108409774812137683
Offset: 0
The Clausen-normalized Bernoulli polynomials of order 2 are:
1
2 x - 2
6 x^2 - 12 x + 5
2 x^3 - 6 x^2 + 5 x - 1
30 x^4 - 120 x^3 + 150 x^2 - 60 x + 3
2 x^5 - 10 x^4 + 50/3 x^3 - 10 x^2 + x + 1/3
42 x^6 - 252 x^5 + 525 x^4 - 420 x^3 + 63 x^2 + 42 x - 5
The value of these polynomials at x = 1 gives the sequence.
- L. Comtet, Advanced Combinatorics, Reidel, Boston, Mass., 1974.
- C. Jordan, Calculus of Finite Differences, New York, Chelsea, 1965.
- N. E. Nørlund, Vorlesungen über Differenzenrechnung, Berlin, Springer-Verlag, 1924.
-
aList := proc(n) local g,c,i; g := k -> (t/(exp(t)-1))^k*exp(x*t): c := proc(n) local i; mul(i,i=select(isprime, map(i->i+1,numtheory[divisors](n)))) end: convert(series(g(2),t,n+8),polynom): seq(i!*c(i)*subs(x=1,coeff(%,t,i)),i=0..n) end: aList(38);
-
aList[n_] := Module[{g, c, s},
g[k_] := (t/(Exp[t]-1))^k*Exp[x*t];
c[k_] := Times @@ Select[Divisors[k]+1, PrimeQ];
s = Series[g[2], {t, 0, n + 8}] // Normal;
Join[{1}, Table[i!*c[i]*Coefficient[s, t, i] /. x -> 1, {i, 1, n}]]];
aList[38] (* Jean-François Alcover, May 28 2024, after Peter Luschny *)
Showing 1-8 of 8 results.
Comments