A016269
Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.
Original entry on oeis.org
1, 9, 55, 285, 1351, 6069, 26335, 111645, 465751, 1921029, 7859215, 31964205, 129442951, 522538389, 2104469695, 8460859965, 33972448951, 136276954149, 546269553775, 2188563950925, 8764714059751, 35090233104309, 140455067207455, 562102681589085, 2249257981411351
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,2).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- K. S. Brown, Dedekind's problem
- John Elias, Illustration of Initial Terms: Inverse of the Sierpinski Triangle
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- N. M. Rivière, Recursive formulas on free distributive lattices, J. Combinatorial Theory 5 1968 229--234. MR0231764 (38 #92). - _N. J. A. Sloane_, May 12 2012
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
[(2^n)*(2^n-1)/2-3^n+2^n: n in [2..30]]; // Vincenzo Librandi, Oct 06 2017
-
a:= n-> Stirling2(n+4, 4)-Stirling2(n+3, 4): seq(a(n), n=0..24); # Zerinvary Lajos, Oct 05 2007
-
CoefficientList[1/((1-2x)(1-3x)(1-4x)) + O[x]^30, x] (* Jean-François Alcover, Nov 28 2015 *)
LinearRecurrence[{9, -26, 24}, {1, 9, 55}, 40] (* Vincenzo Librandi, Oct 06 2017 *)
-
a(n)=(2^n)*(2^n-1)/2-3^n+2^n \\ Charles R Greathouse IV, Mar 22 2016
A099594
Array read by antidiagonals: poly-Bernoulli numbers B(-k,n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 46, 46, 16, 1, 1, 32, 146, 230, 146, 32, 1, 1, 64, 454, 1066, 1066, 454, 64, 1, 1, 128, 1394, 4718, 6902, 4718, 1394, 128, 1, 1, 256, 4246, 20266, 41506, 41506, 20266, 4246, 256, 1, 1, 512, 12866, 85310, 237686, 329462, 237686, 85310, 12866, 512, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, ...
1, 4, 14, 46, 146, 454, ...
1, 8, 46, 230, 1066, 4718, ...
1, 16, 146, 1066, 6902, 41506, ...
1, 32, 454, 4718, 41506, 329462, ...
...
- Alois P. Heinz, Rows n = 0..140, flattened
- Arvind Ayyer and Beáta Bényi, Toppling on permutations with an extra chip, arXiv:2104.13654 [math.CO], 2021. See Table 1 (a) p. 4.
- Beáta Bényi, Advances in Bijective Combinatorics, Ph. D. Dissertation, Doctoral School of Mathematics and Computer Science, University of Szeged, Bolyai Institute, 2014. See Table 1.
- Beáta Bényi and Peter Hajnal, Combinatorics of poly-Bernoulli numbers, arXiv:1510.05765 [math.CO], 2015.
- Beata Bényi and Peter Hajnal, Combinatorial properties of poly-Bernoulli relatives, arXiv preprint arXiv:1602.08684 [math.CO], 2016.
- Beata Benyi and Peter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- Beáta Bényi and Matthieu Josuat-Vergès, Combinatorial proof of an identity on Genocchi numbers, arXiv:2010.10060 [math.CO], 2020.
- Beáta Bényi and Gábor V. Nagy, Bijective enumerations of Γ-free 0-1 matrices, arXiv:1707.06899 [math.CO], 2017.
- Beáta Bényi and José Luis Ramírez, On q-poly-Bernoulli numbers arising from combinatorial interpretations, arXiv:1909.09949 [math.CO], 2019.
- Beáta Bényi and José Luis Ramírez, Poly-Cauchy numbers - the combinatorics behind, arXiv:2105.04791 [math.CO], 2021.
- Beáta Bényi and José Luis Ramírez, Poly-Cauchy Numbers of the Second Kind-the Combinatorics Behind, Enumerative Comb. Appl. (2022) Vol. 2, No. 1, Art. #S2R1.
- Chad Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, INTEGERS Vol. 8 (2008), #A02.
- David Callan, Permutations whose excedance positions are those before 1
- Frédéric Chapoton and Vincent Pilaud, Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, arXiv:2201.06896 [math.CO], 2022. See p. 12.
- Peter G. Jeavons and Martin C. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79 (1995), 327-339.
- Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
- Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Anatol N. Kirillov, On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (0.1).
- D. E. Knuth, Notes on four arrays of numbers arising from the enumeration of CRC constraints and min-and-max-closed constraints, May 06 2024. Mentions this sequence.
- Stéphane Launois, Combinatorics of H-primes in quantum matrices, Journal of Algebra, Volume 309, Issue 1, 2007, Pages 139-167.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- H. A. Witek, G. Mos and C.-P. Chou, Zhang-Zhang Polynomials of Regular 3-and 4-tier Benzenoid Strips, MATCH Commun. Math. Comput. Chem. 73 (2015) 427-442.
- Wikipedia, Acyclic orientation
-
A:= (n, k)-> add(Stirling2(n+1, i+1)*Stirling2(k+1, i+1)*
i!^2, i=0..min(n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Jan 02 2016
-
T[n_, k_] := Sum[(-1)^(j+n)*(1+j)^k*j!*StirlingS2[n, j], {j, 0, n}]; Table[ T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2016 *)
-
T(n,k)=sum(j=0,n,(j+1)^k*sum(i=0,j,(-1)^(n+j-i)*binomial(j,i)*(j-i)^n))
-
T(n,k)=sum(j=0,min(n,k), j!^2*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2)); \\ Michel Marcus, Mar 05 2017
A027643
Numerators of poly-Bernoulli numbers B_n^(k) with k=2.
Original entry on oeis.org
1, 1, -1, -1, 7, 1, -38, -5, 11, 7, -3263, -15, 13399637, 7601, -8364, -91, 1437423473, 3617, -177451280177, -745739, 166416763419, 3317609, -17730427802974, -5981591, 51257173898346323, 5436374093, -107154672791057, -213827575
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..521
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de Théorie des Nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Index entries for sequences related to Bernoulli numbers.
-
A027643:= func< n,k | Numerator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
[A027643(n,2): n in [0..30]]; // G. C. Greubel, Aug 02 2022
-
a := n -> numer((-1)^n*add( (-1)^m*m!*Stirling2(n, m)/(m+1)^2, m=0..n)):
seq(a(n), n=0..27);
-
k=2; Table[Numerator[(-1)^n Sum[(-1)^m m! StirlingS2[n, m]/(m+1)^k, {m, 0, n}]], {n, 0, 27}] (* Michael De Vlieger, Oct 28 2015 *)
-
def A027643(n,k): return numerator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n,j)/(j+1)^k for j in (0..n)) )
[A027643(n,2) for n in (0..30)] # G. C. Greubel, Aug 02 2022
A027651
Poly-Bernoulli numbers B_n^(k) with k=-4.
Original entry on oeis.org
1, 16, 146, 1066, 6902, 41506, 237686, 1315666, 7107302, 37712866, 197451926, 1023358066, 5262831302, 26903268226, 136887643766, 693968021266, 3508093140902, 17693879415586, 89084256837206, 447884338361266, 2249284754708102, 11285908565322946, 56587579617416246
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5.
- Ken Kamano, Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers, J. Int. Seq. 13 (2010), 10.5.2.
- Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Hiroyuki Komaki, Relations between Multi-Poly-Bernoulli numbers and Poly-Bernoulli numbers of negative index, arXiv:1503.04933 [math.NT], 2015.
- Index entries for sequences related to Bernoulli numbers.
- Index entries for linear recurrences with constant coefficients, signature (14,-71,154,-120).
-
[24*5^n-36*4^n+14*3^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
a:= (n, k) -> (-1)^n*sum((-1)^j*j!*Stirling2(n,j)/(j+1)^k, j=0..n);
seq(a(n, -4), n=0..30);
-
Table[24*5^n -36*4^n +14*3^n -2^n, {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
LinearRecurrence[{14,-71,154,-120},{1,16,146,1066},30] (* Harvey P. Dale, Nov 20 2019 *)
-
Vec((1+4*x)*((1-x)^2)/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015
-
[24*5^n -36*4^n +14*3^n -2^n for n in (0..30)] # G. C. Greubel, Aug 02 2022
A027648
Denominators of poly-Bernoulli numbers B_n^(k) with k=4.
Original entry on oeis.org
1, 16, 1296, 3456, 3240000, 144000, 1555848000, 59270400, 5000940000, 1587600, 9762501672000, 11269843200, 221794053611130000, 39390663312000, 5849513501832000, 519437318400, 407131014322092060000, 1063331477208000
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..807
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
- M. Kaneko, Poly-Bernoulli numbers
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Index entries for sequences related to Bernoulli numbers.
-
A027648:= func< n,k | Denominator( (&+[(-1)^(j+n)*Factorial(j)*StirlingSecond(n, j)/(j+1)^k: j in [0..n]]) ) >;
[A027648(n,4): n in [0..20]]; // G. C. Greubel, Aug 02 2022
-
a:= (n, k) -> denom( (-1)^n*add((-1)^m*m!*Stirling2(n, m)/(m+1)^k, m = 0..n) );
seq(a(n, 4), n = 0..30);
-
With[{k = 4}, Table[Denominator@ Sum[((-1)^(m + n))*m!*StirlingS2[n, m]*(m + 1)^(-k), {m, 0, n}], {n, 0, 17}]] (* Michael De Vlieger, Mar 18 2017 *)
-
def A027648(n,k): return denominator( sum((-1)^(n+j)*factorial(j)*stirling_number2(n,j)/(j+1)^k for j in (0..n)) )
[A027648(n,4) for n in (0..20)] # G. C. Greubel, Aug 02 2022
A372261
Number T(n,k,j) of acyclic orientations of the complete tripartite graph K_{n,k,j}; triangle of triangles T(n,k,j), n>=0, k=0..n, j=0..k, read by rows.
Original entry on oeis.org
1, 1, 2, 6, 1, 4, 18, 14, 78, 426, 1, 8, 54, 46, 330, 2286, 230, 1902, 15402, 122190, 1, 16, 162, 146, 1374, 12090, 1066, 10554, 101502, 951546, 6902, 76110, 822954, 8724078, 90768378, 1, 32, 486, 454, 5658, 63198, 4718, 57054, 657210, 7290942, 41506, 525642, 6495534, 78463434, 928340190
Offset: 0
Triangle of triangles T(n,k,j) begins:
1;
;
1;
2, 6;
;
1;
4, 18;
14, 78, 426;
;
1;
8, 54;
46, 330, 2286;
230, 1902, 15402, 122190;
;
...
- Alois P. Heinz, Rows n = 0..40, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
T(n,k,0) for k=0..9 give:
A000012,
A000079,
A027649,
A027650,
A027651,
A283811,
A283812,
A283813,
A284032,
A284033.
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
T:= proc() option remember; local q, l, b; q, l, b:= -1, [args],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
seq(seq(seq(T(n, k, j), j=0..k), k=0..n), n=0..5);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_, k_, j_] := T[n, k, j] = Module[{q = -1, l = {n, k, j}, b},
b[n0_, j0_] := b[n0, j0] = If[j0 == 1, Product[q - i, {i, 0, n0 - 1}]*
(q - n0)^n, Sum[b[n0 + m, j0 - 1]*Coefficient[g[l[[j0]]], x, m],
{m, 0, l[[j0]]}]];
Abs[b[0, 3]]];
Table[Table[Table[T[n, k, j], {j, 0, k}], {k, 0, n}], {n, 0, 5}] // Flatten (* Jean-François Alcover, Jun 14 2024, after Alois P. Heinz *)
A329718
The number of open tours by a biased rook on a specific f(n) X 1 board, where f(n) = A070941(n) and cells are colored white or black according to the binary representation of 2n.
Original entry on oeis.org
1, 2, 4, 4, 8, 6, 14, 8, 16, 10, 24, 10, 46, 24, 46, 16, 32, 18, 44, 14, 84, 34, 68, 18, 146, 68, 138, 44, 230, 84, 146, 32, 64, 34, 84, 22, 160, 54, 112, 22, 276, 106, 224, 54, 376, 106, 192, 34, 454, 192, 406, 112, 690, 224, 406, 84, 1066, 376, 690, 160
Offset: 0
a(1) = 2 because the binary expansion of 2 is 10 and there are 2 open biased rook's tours, namely 12 and 21.
a(2) = 4 because the binary expansion of 4 is 100 and there are 4 open biased rook's tours, namely 132, 213, 231 and 321.
a(3) = 4 because the binary expansion of 6 is 110 and there are 4 open biased rook's tours, namely 123, 132, 231 and 312.
A210381
Triangle by rows, derived from the beheaded Pascal's triangle, A074909.
Original entry on oeis.org
1, 0, 2, 0, 1, 3, 0, 1, 3, 4, 0, 1, 4, 6, 5, 0, 1, 5, 10, 10, 6, 0, 1, 6, 15, 20, 15, 7, 0, 1, 7, 21, 35, 35, 21, 8, 0, 1, 8, 28, 56, 70, 56, 28, 9, 0, 1, 9, 36, 84, 126, 126, 84, 36, 10, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11
Offset: 0
{1},
{0, 2},
{0, 1, 3},
{0, 1, 3, 4},
{0, 1, 4, 6, 5},
{0, 1, 5, 10, 10, 6},
{0, 1, 6, 15, 20, 15, 7},
{0, 1, 7, 21, 35, 35, 21, 8},
{0, 1, 8, 28, 56, 70, 56, 28, 9},
{0, 1, 9, 36, 84, 126, 126, 84, 36, 10},
{0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11}
...
- Konrad Knopp, Elements of the Theory of Functions, Dover, 1952,pp 117-118.
-
t2[n_, m_] = If[m - 1 <= n, Binomial[n, m - 1], 0];
O2 = Table[Table[If[n == m, t2[n, m] + 1, t2[n, m]], {m, 0, n}], {n, 0, 10}];
Flatten[O2]
Showing 1-8 of 8 results.
Comments