A027649 a(n) = 2*(3^n) - 2^n.
1, 4, 14, 46, 146, 454, 1394, 4246, 12866, 38854, 117074, 352246, 1058786, 3180454, 9549554, 28665046, 86027906, 258149254, 774578834, 2323998646, 6972520226, 20918609254, 62757924914, 188277969046, 564842295746, 1694543664454, 5083664547794, 15251060752246
Offset: 0
References
- Leonhard Euler, Introductio in analysin infinitorum (1748), section 216.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Taylor Brysiewicz, Holger Eble, and Lukas Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021.
- R. E. Crandall, On the 3x+1 problem, Math. Comp., 32 (1978) 1281-1292.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- John Elias, Illustration of initial terms: Reflected Sierpinski triangle
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
- Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
- K. Kamano, Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers, J. Int. Seq. 13 (2010), 10.5.2.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- S. Nkonkobe and V. Murali, On some properties and relations between restricted barred preferential arrangements, multi-poly-bernoulli numbers and related numbers, arXiv:1509.07352 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Sierpinski Sieve
- Wikipedia, Sierpinski triangle
- Index entries for sequences related to Bernoulli numbers.
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Crossrefs
Programs
-
Haskell
a027649 n = a027649_list !! n a027649_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (1, 1) -- Reinhard Zumkeller, Jun 09 2013
-
Magma
[2*(3^n)-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
Maple
a(n, k):= (-1)^n*sum( (-1)^'m'*'m'!*Stirling2(n,'m')/('m'+1)^k,'m'=0..n); seq(a(n, -2), n=0..30);
-
Mathematica
Table[2(3^n)-2^n,{n,0,30}] (* or *) LinearRecurrence[ {5,-6},{1,4},31] (* Harvey P. Dale, Apr 22 2011 *)
-
PARI
a(n)=2*(3^n)-2^n \\ Charles R Greathouse IV, Jul 16 2011
-
PARI
Vec((1-x)/((1-2*x)*(1-3*x)) + O(x^50)) \\ Altug Alkan, Oct 12 2015
-
SageMath
[2*(3^n - 2^(n-1)) for n in (0..30)] # G. C. Greubel, Aug 01 2022
Formula
G.f.: (1-x)/((1-2*x)*(1-3*x)).
a(n) = 3*a(n-1) + 2^(n-1), with a(0) = 1.
a(n) = Sum_{k=0..n} binomial(n, k)*(2^(k+1) - 1). - Paul Barry, Mar 24 2003
Partial sums of A053581. - Paul Barry, Jun 26 2003
Main diagonal of array (A085870) defined by T(i, 1) = 2^i - 1, T(1, j) = 2^j - 1, T(i, j) = T(i-1, j) + T(i-1, j-1). - Benoit Cloitre, Aug 05 2003
a(n) = A090888(n, 3). - Ross La Haye, Sep 21 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+1)*Sum_{j=0..floor(k/2)} A001045(k-2j). - Paul Barry, Apr 17 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n,j)*binomial(j+1,k+1). - Paul Barry, Sep 18 2006
a(n) = A166060(n+1)/6. - Philippe Deléham, Oct 21 2009
a(n) = 5*a(n-1) - 6*a(n-2), a(0)=1, a(1)=4. - Harvey P. Dale, Apr 22 2011
a(n) = A217764(n,2). - Ross La Haye, Mar 27 2013
For n>0, a(n) = 3 * a(n-1) + 2^(n-1) = 2 * (a(n-1) + 3^(n-1)). - J. Conrad, Oct 29 2015
for n>0, a(n) = 2 * (1 + 2^(n-2) + Sum_{x=1..n-2} Sum_{k=0..x-1} (binomial(x-1,k)*(2^(k+1) + 2^(n-x+k)))). - J. Conrad, Dec 10 2015
E.g.f.: exp(2*x)*(2*exp(x) - 1). - Stefano Spezia, May 18 2024
Extensions
Better formulas from David W. Wilson and Michael Somos
Incorrect formula removed by Charles R Greathouse IV, Mar 18 2010
Duplications (due to corrections to A numbers) removed by Peter Munn, Jun 15 2017
Comments