A355078 a(n) is the smallest number k with exactly n divisors in A033075.
1, 2, 4, 6, 18, 12, 24, 60, 120, 168, 360, 1080, 840, 3360, 2520, 7560, 15120, 30240, 84840, 196560, 339360, 254520, 1102920, 763560, 1527120, 4581360, 3054240, 9162720, 9926280, 19852560, 59557680, 39705120, 119115360, 277935840, 674987040, 1151448480, 1469089440
Offset: 1
Examples
1 has a single divisor in A033075, so a(1) = 1. 2 has divisors 1 and 2 in A033075, so a(2) = 2; 3 has only divisors 1, 3 in A033075, 4 has divisors 1, 2, 4 in A033075, so a(3) = 4. 5 has only divisors 1, 5 in A033075, 6 has divisors 1, 2, 3, 6 in A033075, so a(4) = 6.
Crossrefs
Cf. A033075.
Programs
-
Magma
alt:=func
; a:=[]; for n in [1..37] do k:=1; while #[d:d in Divisors(k)|alt(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; -
PARI
diff(v)=vector(#v-1, i, v[i+1]-v[i]); is(n)=if(n>9, Set(abs(diff(digits(n))))==[1], n>0); a(n) = my(k=1); while (sumdiv(k, d, is(d)) != n, k++); k; \\ Michel Marcus, Jul 11 2022
Comments