A034262 a(n) = n^3 + n.
0, 2, 10, 30, 68, 130, 222, 350, 520, 738, 1010, 1342, 1740, 2210, 2758, 3390, 4112, 4930, 5850, 6878, 8020, 9282, 10670, 12190, 13848, 15650, 17602, 19710, 21980, 24418, 27030, 29822, 32800, 35970, 39338, 42910, 46692, 50690, 54910, 59358, 64040, 68962, 74130
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
a034262 n = a000578 n + n -- Reinhard Zumkeller, Sep 26 2014
-
Mathematica
Table[n^3 + n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2010 *)
-
PARI
{a(n) = n^3 + n}; /* Michael Somos, Jul 11 2017 */
-
Sage
[n**3+n for n in (0..38)] # Stefano Spezia, Oct 08 2022
Formula
a(n) = 2*A006003(n).
For n>1, a(n) = floor(n^5/(n^2-1)). - Gary Detlefs, Feb 10 2010
Sum_{n>=1} 1/a(n) = 0.6718659855... = gamma + Re psi(1+i) = A001620+A248177. [Borwein et al., J. Math. Anal. Appl. 316 (2006) 328]. - R. J. Mathar, Jul 17 2012
a(n) = -a(-n) for all n in Z. - Michael Somos, Jul 11 2017
G.f.: 2*x*(x^2+x+1)/(x-1)^4. - Alois P. Heinz, Oct 08 2022
E.g.f.: x*(2 + 3*x + x^2)*exp(x). - Stefano Spezia, Jun 20 2024
Comments