A002061
Central polygonal numbers: a(n) = n^2 - n + 1.
Original entry on oeis.org
1, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, 241, 273, 307, 343, 381, 421, 463, 507, 553, 601, 651, 703, 757, 813, 871, 931, 993, 1057, 1123, 1191, 1261, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 2551, 2653
Offset: 0
G.f. = 1 + x + 3*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 31*x^6 + 43*x^7 + ...
- Archimedeans Problems Drive, Eureka, 22 (1959), 15.
- Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of the British Mathematical Olympiad 2007, page 160.
- Anthony Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 4 pp. 64 and 173 (1984).
- Paul R. Halmos, Linear Algebra Problem Book, MAA, 1995, pp. 75-6, 242-4.
- Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 87.
- Daniel R. Hughes and Frederick Charles Piper, Projective Planes, Springer, 1973.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Richard Bean and Ebadollah S. Mahmoodian, A new bound on the size of the largest critical set in a Latin square, Discrete mathematics, Vol. 267, No. 1-3 (2003), pp. 13-21, arXiv preprint, arXiv:math/0107159 [math.CO], 2001.
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, Wiener indices of maximal k-degenerate graphs, International Journal of Mathematical Combinatorics 2 (2021) 68-79.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
- British Mathematical Olympiad, 1984 - Problem 4.
- British Mathematical Olympiad, 2007 - Problem 1.
- R. J. Cook and G. V. Wood, Feynman's Triangle, Mathematical Gazette, Vol. 88, No. 512 (2004), pp. 299-302.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co., London, 1950, p. 22.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seq., Vol. 7 (2004), Article 04.1.6.
- Craig Knecht, Maximum number of elementary hexagons in an order-n hexagon, 2018.
- Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations Discrete Math., Vol. 312, No. 21 (2012), pp. 3179-3194. MR2957938. - From _N. J. A. Sloane_, Sep 25 2012
- Boris D. Lubachevsky and Ronald L. Graham, Minimum perimeter rectangles that enclose congruent non-overlapping circles, arXiv:math/0412443 [math.MG], 2004-2008.
- Boris D. Lubachevsky and Ronald L. Graham, Minimum perimeter rectangles that enclose congruent non-overlapping circles, Discrete Mathematics, Vol. 309, No. 8, (28 April 2009), pp. 1947-1962.
- R. J. Mathar, Tiling hexagons with smaller hexagons and unit triangles, vixra:1608.0380 (2016) eq. (11).
- Robert Munafo, Sequence A002061, Hogben's Centered Polygonal Numbers.
- Enrique Navarrete, Central Polygonal Numbers in Finite Sequences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Bruce E. Sagan, Yeong-Nan Yeh, and Ping Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., Vol. 60 (1996), pp. 959-969.
- A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, Journal of Integer Sequences, Vol. 14 (2011), #11.7.5.
- Steven H. Weintraub, An interesting recursion, Amer. Math. Monthly, Vol. 111, No. 6 (2004), pp. 528-530.
- Eric Weisstein's World of Mathematics, Alexander Polynomial.
- Eric Weisstein's World of Mathematics, Connected Graph.
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Fan Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph.
- Eric Weisstein's World of Mathematics, Wheel Graph.
- Wikipedia, Projective Plane.
- Index to values of cyclotomic polynomials of integer argument.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index to sequences related to Olympiads.
Cf.
A000037,
A000124,
A000217,
A001263,
A001844,
A002383,
A004273,
A005408,
A005563,
A007645,
A014206,
A051890,
A055494,
A091776,
A132014,
A132382,
A135668,
A137928,
A139250,
A256188,
A028387.
Cf.
A010000 (minimum Weiner index of 3-degenerate graphs).
-
List([0..50], n->n^2-n+1); # Muniru A Asiru, May 27 2018
-
a002061 n = n * (n - 1) + 1 -- Reinhard Zumkeller, Dec 18 2013
-
[ n^2 - n + 1 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 12 2014
-
A002061 := proc(n)
numtheory[cyclotomic](6,n) ;
end proc:
seq(A002061(n), n=0..20); # R. J. Mathar, Feb 07 2014
-
FoldList[#1 + #2 &, 1, 2 Range[0, 50]] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 1, 3}, 60] (* Harvey P. Dale, May 25 2011 *)
Table[n^2 - n + 1, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 12 2014 *)
CoefficientList[Series[(1 - 2x + 3x^2)/(1 - x)^3, {x, 0, 52}], x] (* Robert G. Wilson v, Feb 18 2018 *)
Cyclotomic[6, Range[0, 100]] (* Paolo Xausa, Feb 09 2024 *)
-
makelist(n^2 - n + 1,n,0,55); /* Martin Ettl, Oct 16 2012 */
-
a(n) = n^2 - n + 1
A006003
a(n) = n*(n^2 + 1)/2.
Original entry on oeis.org
0, 1, 5, 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, 2465, 2925, 3439, 4010, 4641, 5335, 6095, 6924, 7825, 8801, 9855, 10990, 12209, 13515, 14911, 16400, 17985, 19669, 21455, 23346, 25345, 27455, 29679, 32020, 34481, 37065, 39775
Offset: 0
G.f. = x + 5*x^2 + 15*x^3 + 34*x^4 + 65*x^5 + 111*x^6 + 175*x^7 + 260*x^8 + ...
For a(2)=5, the five tetrahedra have faces AAAA, AAAB, AABB, ABBB, and BBBB with colors A and B. - _Robert A. Russell_, Jan 31 2020
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 15, p. 5, Ellipses, Paris 2008.
- F.-J. Papp, Colloquium Talk, Department of Mathematics, University of Michigan-Dearborn, March 6, 2005.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.
- James Grime and Brady Haran, Magic Hexagon, Numberphile video (2014).
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, Journal of Integer Sequences, 17 (2014), Article 14.3.5. - _Felix Fröhlich_, Oct 11 2016
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Ashish Kumar Pandey and Brajesh Kumar Sharma, A Note On Magic Squares And Magic Constants, Appl. Math. E-Notes (2023) Vol. 23, Art. No. 53, 577-582. See p. 577.
- A. J. Turner and J. F. Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, preprint, Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation.
- Eric Weisstein's World of Mathematics, Magic Constant.
- Wikipedia, Floyd's triangle. - _Paul Muljadi_, Jan 25 2010
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for sequences related to magic squares.
- Index to sequences related to polygonal numbers.
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527, this sequence,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
Antidiagonal sums of array in
A000027. Row sums of the triangular view of
A000027.
Other polyhedron colorings:
A337898 (cube faces, octahedron vertices),
A337897 (octahedron faces, cube vertices),
A337962 (dodecahedron faces, icosahedron vertices),
A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of
A325001 (simplex vertices and facets) and
A337886 (simplex faces and peaks).
-
a_n:=List([0..nmax], n->n*(n^2 + 1)/2); # Stefano Spezia, Aug 12 2018
-
a006003 n = n * (n ^ 2 + 1) `div` 2
a006003_list = scanl (+) 0 a005448_list
-- Reinhard Zumkeller, Jun 20 2013
-
% Also works with FreeMat.
for(n=0:nmax); tm=n*(n^2 + 1)/2; fprintf('%d\t%0.f\n', n, tm); end
% Stefano Spezia, Aug 12 2018
-
[n*(n^2 + 1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
-
[Binomial(n,3)+Binomial(n-1,3)+Binomial(n-2,3): n in [2..60]]; // Vincenzo Librandi, Sep 12 2015
-
Table[ n(n^2 + 1)/2, {n, 0, 45}]
LinearRecurrence[{4,-6,4,-1}, {0,1,5,15},50] (* Harvey P. Dale, May 16 2012 *)
CoefficientList[Series[x (1 + x + x^2)/(x - 1)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
With[{n=50},Total/@TakeList[Range[(n(n^2+1))/2],Range[0,n]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Nov 28 2017 *)
-
a(n):=n*(n^2 + 1)/2$ makelist(a(n), n, 0, nmax); /* Stefano Spezia, Aug 12 2018 */
-
{a(n) = n * (n^2 + 1) / 2}; /* Michael Somos, Dec 24 2011 */
-
concat(0, Vec(x*(1+x+x^2)/(x-1)^4 + O(x^20))) \\ Felix Fröhlich, Oct 11 2016
-
def A006003(n): return n*(n**2+1)>>1 # Chai Wah Wu, Mar 25 2024
Better description from Albert Rich (Albert_Rich(AT)msn.com), Mar 1997
A071253
a(n) = n^2*(n^2+1).
Original entry on oeis.org
0, 2, 20, 90, 272, 650, 1332, 2450, 4160, 6642, 10100, 14762, 20880, 28730, 38612, 50850, 65792, 83810, 105300, 130682, 160400, 194922, 234740, 280370, 332352, 391250, 457652, 532170, 615440, 708122, 810900, 924482, 1049600, 1187010, 1337492, 1501850, 1680912
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
A071253:= func< n | 2*Binomial(n^2+1,2) >;
[A071253(n): n in [0..40]]; // G. C. Greubel, Sep 12 2024
-
with(combinat):seq(lcm(fibonacci(3,n),n^2),n=0..35); # Zerinvary Lajos, Apr 20 2008
a:=n->add(n+add(n+add(n, j=1..n-1),j=1..n),j=1..n):seq(a(n), n=0..41); # Zerinvary Lajos, Aug 27 2008
-
Table[(1/4) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n,0,40}] (* Artur Jasinski, Feb 10 2010 *)
Table[n^2*(n^2+1),{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
CoefficientList[Series[2 x (1+x) (1+4 x+x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)
-
a(n)=n^2*(n^2+1) \\ Charles R Greathouse IV, Sep 24 2015
-
def A071253(n): return 2*binomial(n^2+1,2)
[A071253(n) for n in range(41)] # G. C. Greubel, Sep 12 2024
A104257
Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.
Original entry on oeis.org
2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2
Array begins:
2, 3, 4, 5, 6, 7, 8, 9, ...
3, 4, 9, 10, 12, 13, 27, 28, ...
4, 5, 16, 17, 20, 21, 64, 65, ...
5, 6, 25, 26, 30, 31, 125, 126, ...
6, 7, 36, 37, 42, 43, 216, 217, ...
7, 8, 49, 50, 56, 57, 343, 344, ...
8, 9, 64, 65, 72, 73, 512, 513, ...
9, 10, 81, 82, 90, 91, 729, 730, ...
...
Rows include (essentially)
A005836,
A000695,
A033042,
A033043,
A033044,
A033045,
A033046,
A033047,
A033048,
A033049,
A033050,
A033051,
A033052.
-
T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
-
T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
-
def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
A098547
a(n) = n^3 + n^2 + 1.
Original entry on oeis.org
1, 3, 13, 37, 81, 151, 253, 393, 577, 811, 1101, 1453, 1873, 2367, 2941, 3601, 4353, 5203, 6157, 7221, 8401, 9703, 11133, 12697, 14401, 16251, 18253, 20413, 22737, 25231, 27901, 30753, 33793, 37027, 40461, 44101, 47953, 52023, 56317, 60841, 65601, 70603, 75853
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Oct 26 2004
Cf.
A000578,
A001093,
A011379,
A027444,
A033431,
A033562,
A034262,
A053698,
A061317,
A066023,
A071568.
A344330
Sides s of squares that can be tiled with squares of two different sizes so that the number of large or small squares is the same.
Original entry on oeis.org
10, 15, 20, 30, 40, 45, 50, 60, 65, 68, 70, 75, 78, 80, 90, 100, 105, 110, 120, 130, 135, 136, 140, 150, 156, 160, 165, 170, 175, 180, 190, 195, 200, 204, 210, 220, 222, 225, 230, 234, 240, 250, 255, 260, 270, 272, 280, 285, 290, 300, 310, 312, 315, 320, 325, 330, 340, 345, 350, 360, 369, 370
Offset: 1
-> Example of type 1:
Square 10 x 10 with a = 1, b = 2, s = 10, z = 20.
___ ___ _ ___ ___ _
| | |_| | |_|
|___|___|_|___|___|_|
| | |_| | |_| with 10 elementary 2 x 5 rectangles
|___|___|_|___|___|_|
| | |_| | |_| ___ ___ _
|___|___|_|___|___|_| | | |_|
| | |_| | |_| |___|___|_|
|___|___|_|___|___|_|
| | |_| | |_|
|___|___|_|___|___|_|
.
-> Example of type 2:
Square 15 x 15 with a = 3, b = 4, s = 15, z = 9.
________ ________ ________ _____
| | | | |
| | | | |
| | | |_____|
|_______ |________|________| |
| | | | |
| | | |_____|
| | | | |
|________|________|________| |
| | | |_____|
| | | | |
| | | | |
|_____ __|___ ____|_ ______|_____|
| | | | | |
| | | | | |
|_____|______|______|______|_____|
Remarks:
- With terms as 10, 20, ... we only obtain sides of squares of type 1:
10 is a term of this type because the square 10 X 10 only can be tiled with 20 squares of size 1 X 1 and 20 squares of size 2 X 2 (see first example),
20 is another term of this type because the square 20 X 20 only can be tiled with 80 squares of size 1 x 1 and 80 squares of size 2 x 2.
- With terms as 15, 65, ... we only obtain sides of squares of type 2:
15 is a term of this type because the square 15 X 15 only can be tiled with 9 squares of size 3 X 3 and 9 squares of size 4 X 4 (see second example),
65 is another term of this type because the square 65 X 65 only can be tiled with 25 squares of size 5 X 5 and 25 squares of size 12 X 12.
- With terms as 30, 60, ... we obtain both sides of squares of type 1 and of type 2:
30 is a term of type 1 because the square 30 X 30 can be tiled with 180 squares of size 1 X 1 and 180 squares of size 2 X 2, but,
30 is also a term of type 2 because the square 30 X 30 can be tiled with 9 squares of size 6 X 6 and 9 squares of size 8 X 8.
- Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.
-
pts(lim) = my(v=List(), m2, s2, h2, h); for(middle=4, lim-1, m2=middle^2; for(small=1, middle, s2=small^2; if(issquare(h2=m2+s2, &h), if(h>lim, break); listput(v, [small, middle, h])))); vecsort(Vec(v)); \\ A009000
isdp4(s) = my(k=1, x); while(((x=k^4 - (k-1)^4) <= s), if (x == s, return (1)); k++); return(0);
isokp2(s) = {if (!isdp4(s), return(0)); if (s % 2, my(vp = pts(s)); for (i=1, #vp, my(vpi = vp[i], a = vpi[1], b = vpi[2], c = vpi[3]); if (a*c/(c-b) == s, return(1)); ); ); }
isok2(s) = {if (isokp2(s), return (1)); fordiv(s, d, if ((d>1) || (dx*y*(x^2+y^2), [1..m]), s);}
isok1(s) = {if (isokp1(s), return (1)); fordiv(s, d, if ((d>1) || (dMichel Marcus, Jun 04 2021
A221542
T(n,k) = Number of 0..k arrays of length n with each element differing from at least one neighbor by something other than 1, starting with 0.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 0, 3, 4, 2, 0, 4, 8, 10, 3, 0, 5, 14, 30, 22, 5, 0, 6, 22, 68, 103, 54, 8, 0, 7, 32, 130, 303, 364, 134, 13, 0, 8, 44, 222, 716, 1386, 1276, 334, 21, 0, 9, 58, 350, 1455, 4018, 6311, 4483, 822, 34, 0, 10, 74, 520, 2658, 9665, 22466, 28762, 15740, 2014, 55, 0, 11
Offset: 1
Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....2....2....3....2....0....4....0....4....4....3....4....0....4....4....4
..0....4....4....4....0....2....3....2....3....0....0....4....2....1....4....4
..0....0....0....4....4....4....1....3....1....4....2....2....0....1....2....0
..3....2....4....4....4....0....0....3....1....1....4....4....4....2....0....0
..0....2....1....2....0....2....2....3....3....1....4....2....0....0....0....3
A061317
Split positive integers into extending even groups and sum: 1+2, 3+4+5+6, 7+8+9+10+11+12, 13+14+15+16+17+18+19+20, ...
Original entry on oeis.org
0, 3, 18, 57, 132, 255, 438, 693, 1032, 1467, 2010, 2673, 3468, 4407, 5502, 6765, 8208, 9843, 11682, 13737, 16020, 18543, 21318, 24357, 27672, 31275, 35178, 39393, 43932, 48807, 54030, 59613, 65568, 71907, 78642, 85785, 93348, 101343, 109782
Offset: 0
1+2 = 3; 3+4+5+6 = 18; 7+8+9+10+11+12 = 57; 13+14+15+16+17+18+19+20 = 132.
-
A061317:=n->2*n^3+n; seq(A061317(n), n=0..100); # Wesley Ivan Hurt, Mar 20 2014
-
Table[2n^3+n,{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2010 *)
LinearRecurrence[{4,-6,4,-1},{0,3,18,57},40] (* Harvey P. Dale, Aug 23 2015 *)
With[{nn=40},Total/@TakeList[Range[nn+nn^2],2Range[0,nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Mar 10 2018 *)
-
a(n) = { 2*n^3 + n } \\ Harry J. Smith, Jul 21 2009
A092181
Figurate numbers based on the 24-cell (4-D polytope with Schlaefli symbol {3,4,3}).
Original entry on oeis.org
1, 24, 153, 544, 1425, 3096, 5929, 10368, 16929, 26200, 38841, 55584, 77233, 104664, 138825, 180736, 231489, 292248, 364249, 448800, 547281, 661144, 791913, 941184, 1110625, 1301976, 1517049, 1757728, 2025969, 2323800, 2653321, 3016704
Offset: 1
Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004
a(3)= 3^2*((3*3^2)-(4*3)+2) = 9*(27-12+2) = 9*17 = 153
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- Eric Weisstein's World of Mathematics, 24-Cell
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). [_R. J. Mathar_, Jun 21 2010]
-
[n^2*((3*n^2)-(4*n)+2): n in [1..40]]; // Vincenzo Librandi, May 22 2011
-
Table[SeriesCoefficient[x (1 + 19 x + 43 x^2 + 9 x^3)/(1 - x)^5, {x, 0, n}], {n, 32}] (* Michael De Vlieger, Dec 14 2015 *)
LinearRecurrence[{5,-10,10,-5,1},{1,24,153,544,1425},40] (* Harvey P. Dale, May 25 2022 *)
-
a(n) = n^2*(3*n^2-4*n+2); \\ Michel Marcus, Dec 14 2015
A099721
a(n) = n^2*(2*n+1).
Original entry on oeis.org
0, 3, 20, 63, 144, 275, 468, 735, 1088, 1539, 2100, 2783, 3600, 4563, 5684, 6975, 8448, 10115, 11988, 14079, 16400, 18963, 21780, 24863, 28224, 31875, 35828, 40095, 44688, 49619, 54900, 60543, 66560, 72963, 79764, 86975, 94608, 102675, 111188, 120159, 129600
Offset: 0
Douglas Winston (douglas.winston(AT)srupc.com), Nov 07 2004
Cf.
A000578,
A001093,
A011379,
A015237,
A027444,
A033431,
A033562,
A034262,
A053698,
A061317,
A066023,
A071568,
A098547.
-
[n^2*(2*n+1): n in [0..50]]; // Vincenzo Librandi, May 01 2011
-
A099721 := proc(n) n^2*(2*n+1) ; end proc:
seq(A099721(n),n=0..10) ;
-
a[n_]:=2*n^3+n^2; (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)
LinearRecurrence[{4,-6,4,-1},{0,3,20,63},40] (* Harvey P. Dale, Aug 19 2022 *)
-
a(n) = ceil(sum(i=n^2-(n-1), n^2+(n-1), if(!issquare(4*i+1), (2*i+1+sqrt(4*i+1))/2, 0))); \\ Michel Marcus, Nov 14 2014, after Richard R. Forberg
Showing 1-10 of 37 results.
Comments