cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A346265 a(n) is the number of distinct possible tilings of type 1 (A344331) or of type 2 (A344332) for a square whose side is A344330(n).

Original entry on oeis.org

1, 1, 2, 5, 3, 2, 2, 9, 1, 1, 2, 2, 1, 4, 9, 4, 2, 2, 13, 5, 3, 2, 4, 10, 2, 5, 2, 2, 1, 16, 2, 4, 6, 2, 10, 4, 1, 4, 2, 2, 17, 3, 2, 9, 13, 3, 6, 2, 3, 19, 2, 3, 4, 6, 2, 10, 6, 2, 7, 23, 2, 2, 3, 4, 18, 8, 4, 4, 2, 18, 2, 2, 6, 2, 18, 2, 4, 2, 4, 2, 2, 21, 3, 4, 6, 11, 14, 6, 2, 23
Offset: 1

Views

Author

Bernard Schott, Aug 11 2021

Keywords

Comments

These squares with side = A344330(n) can be tiled with squares of two different sizes so that the numbers of large or small squares are equal.
Notation: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.

Examples

			-> A344330(1) = A344331(1) = 10 and there is no k_2 such that A344330(1) = A344332(k_2) = 10, then a(1) = A345287(1) = 1 (example below of type 1):
   Primitive square 10 X 10 corresponding to a(1) = 1 with
    a = 1, b = 2, s = 10, z = 20:
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
-> A344330(2) = A344332(1) = 15 and there is no k_1 such that A344330(2) = A344331(k_1) = 15, then a(2) = A346264(1) = 1 (example below of type 2):
   Primitive square 15 X 15 corresponding to a(2) = 1 with
     a = 3, b = 4, c = 5, s = 15, z = 9:
        ________ ________ ________ ______
       |        |        |        |      |
       |        |        |        |      |
       |        |        |        |______|
       |_______ |________|________|      |
       |        |        |        |      |
       |        |        |        |______|
       |        |        |        |      |
       |________|________|________|      |
       |        |        |        |______|
       |        |        |        |      |
       |        |        |        |      |
       |_____ __|___ ____|_ ______|______|
       |     |      |      |      |      |
       |     |      |      |      |      |
       |_____|______|______|______|______|
-> A344330(4) = A344331(3) = A344332(2) = 30, then a(4) = A345287(3) + A346264(2) = 3+2 = 5 (see link with the corresponding 5 distinct tilings).
-> A344330(6) = A344332(3) = 45 and there is no k_1 such that A344330(6) = A344331(k_1) = 45, then a(6) = A346264(3) = 2.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Programs

  • PARI
    \\ isok1 from A344331 and isok2 from A344332
    isok3(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->if (gcd(x, y)==1, x*y*(x^2+y^2), 0), [1..m]), s); } \\ A344333
    sd7(x) = sumdiv(x, d, if (isok3(d), numdiv(x/d))); \\ A345287
    isok7(k) = my(kk= sqrtnint(k\4, 3)+2); vecsearch(vector(kk, i, (i+1)^4 - i^4), k); \\ A005917
    sd4(x) = sumdiv(x, d, if (isok7(d), numdiv(x/d))); \\ A346264
    lista(nn) = {for (n=1, nn, my(b1 = isok1(n), b2 = isok2(n)); if (b1 || b2, my(x = 0); if (b1, x += sd7(n)); if (b2, x += sd4(n)); print1(x, ", ");););} \\ Michel Marcus, Dec 23 2021

Formula

If A344330(n) = A344331(k_1) and there is no k_2 such that A344330(n) = A344332(k_2) then a(n) = A345287(k_1).
If A344330(n) = A344332(k_2) and there is no k_1 such that A344330(n) = A344331(k_1) then a(n) = A346264(k_2).
If A344330(n) = A344331(k_1) = A344332(k_2) then a(n) = A345287(k_1) + A346264(k_2).

Extensions

a(19),a(59),a(86),a(87) corrected by Bernard Schott, Dec 23 2021

A016754 Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0

Views

Author

Keywords

Comments

The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl, Jan 26 2008
Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function (A000594). - Benoit Cloitre, May 01 2003
If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Binomial transform of [1, 8, 8, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393. Numbers 8k+1 are squares iff k is a triangular number from A000217. And squares have form 4n(n+1)+1. - Artur Jasinski, Mar 27 2008
Sequence arises from reading the line from 1, in the direction 1, 25, ... and the line from 9, in the direction 9, 49, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Equals the triangular numbers convolved with [1, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
First differences: A008590(n) = a(n) - a(n-1) for n>0. - Reinhard Zumkeller, Nov 08 2009
Central terms of the triangle in A176271; cf. A000466, A053755. - Reinhard Zumkeller, Apr 13 2010
Odd numbers with odd abundance. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829. - Jaroslav Krizek, May 07 2011
Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_{k>=1} (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509. - Alexander R. Povolotsky, Oct 12 2011
Ulam's spiral (SE spoke). - Robert G. Wilson v, Oct 31 2011
All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler, Mar 19 2012
Right edge of both triangles A214604 and A214661: a(n) = A214604(n+1,n+1) = A214661(n+1,n+1). - Reinhard Zumkeller, Jul 25 2012
Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler, Feb 23 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective even leg b (A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot, May 27 2014
Number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) <= n. - Michel Marcus, Nov 28 2014
Except for a(1)=4, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
a(n) is the sum of 2n+1 consecutive numbers, the first of which is n+1. - Ivan N. Ianakiev, Dec 21 2016
a(n) is the number of 2 X 2 matrices with all elements in {0..n} with determinant = 2*permanent. - Indranil Ghosh, Dec 25 2016
Engel expansion of Pi*StruveL_0(1)/2 where StruveL_0(1) is A197037. - Benedict W. J. Irwin, Jun 21 2018
Consider all Pythagorean triples (X,Y,Z=Y+1) ordered by increasing Z; the segments on the hypotenuse {p = a(n)/A001844(n), q = A060300(n)/A001844(n) = A001844(n) - p} and their ratio p/q = a(n)/A060300(n) are irreducible fractions in Q\Z. X values are A005408, Y values are A046092, Z values are A001844. - Ralf Steiner, Feb 25 2020
a(n) is the number of large or small squares that are used to tile primitive squares of type 2 (A344332). - Bernard Schott, Jun 03 2021
Also, positive odd integers with an odd number of odd divisors (for similar sequence with 'even', see A348005). - Bernard Schott, Nov 21 2021
a(n) is the least odd number k = x + y, with 0 < x < y, such that there are n distinct pairs (x,y) for which x*y/k is an integer; for example, a(2) = 25 and the two corresponding pairs are (5,20) and (10,15). The similar sequence with 'even' is A016742 (see Comment of Jan 26 2018). - Bernard Schott, Feb 24 2023
From Peter Bala, Jan 03 2024: (Start)
The sequence terms are the exponents of q in the series expansions of the following infinite products:
1) q*Product_{n >= 1} (1 - q^(16*n))*(1 + q^(8*n)) = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + ....
2) q*Product_{n >= 1} (1 + q^(16*n))*(1 - q^(8*n)) = q - q^9 - q^25 + q^49 + q^81 - q^121 - q^169 + + - - ....
3) q*Product_{n >= 1} (1 - q^(8*n))^3 = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 - + ....
4) q*Product_{n >= 1} ( (1 + q^(8*n))*(1 - q^(16*n))/(1 + q^(16*n)) )^3 = q + 3*q^9 - 5*q^25 - 7*q^49 + 9*q^81 + 11*q^121 - 13*q^169 - 15*q^225 + + - - .... (End)

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A000447 (partial sums).
Cf. A348005, A379481 [= a(A048673(n)-1)].
Partial sums of A022144.
Positions of odd terms in A341528.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 1 + Sum_{i=1..n} 8*i = 1 + 8*A000217(n). - Xavier Acloque, Jan 21 2003; Zak Seidov, May 07 2006; Robert G. Wilson v, Dec 29 2010
O.g.f.: (1+6*x+x^2)/(1-x)^3. - R. J. Mathar, Jan 11 2008
a(n) = 4*n*(n + 1) + 1 = 4*n^2 + 4*n + 1. - Artur Jasinski, Mar 27 2008
a(n) = A061038(2+4n). - Paul Curtz, Oct 26 2008
Sum_{n>=0} 1/a(n) = Pi^2/8 = A111003. - Jaume Oliver Lafont, Mar 07 2009
a(n) = A000290(A005408(n)). - Reinhard Zumkeller, Nov 08 2009
a(n) = a(n-1) + 8*n with n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010
a(n) = A033951(n) + n. - Reinhard Zumkeller, May 17 2009
a(n) = A033996(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = (A005408(n))^2. - Zak Seidov, Nov 29 2011
From George F. Johnson, Sep 05 2012: (Start)
a(n+1) = a(n) + 4 + 4*sqrt(a(n)).
a(n-1) = a(n) + 4 - 4*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 8.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).
(a(n+1) - a(n-1))/8 = sqrt(a(n)).
a(n+1)*a(n-1) = (a(n)-4)^2.
a(n) = 2*A046092(n) + 1 = 2*A001844(n) - 1 = A046092(n) + A001844(n).
Limit_{n -> oo} a(n)/a(n-1) = 1. (End)
a(n) = binomial(2*n+2,2) + binomial(2*n+1,2). - John Molokach, Jul 12 2013
E.g.f.: (1 + 8*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 23 2016
a(n) = A101321(8,n). - R. J. Mathar, Jul 28 2016
Product_{n>=1} A033996(n)/a(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A014105(n) + A000384(n+1). - Bruce J. Nicholson, Nov 11 2017
a(n) = A003215(n) + A002378(n). - Klaus Purath, Jun 09 2020
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 13*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/e. (End)
Sum_{n>=0} (-1)^n/a(n) = A006752. - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi/4 (A003881). (End)
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A014634(n) - A002943(n). See Diamond Triangles illustration.
a(n) = A003154(n+1) - A046092(n). See Diamond Stars illustration. (End)
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 ))))).
3/2 - 2*log(2) = Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 - ... ))))).
Row 2 of A142992. (End)
From Peter Bala, Mar 26 2024: (Start)
8*a(n) = (2*n + 1)*(a(n+1) - a(n-1)).
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1/2 - Pi/8 = 1/(9 + (1*3)/(8 + (3*5)/(8 + ... + (4*n^2 - 1)/(8 + ... )))). For the continued fraction use Lorentzen and Waadeland, p. 586, equation 4.7.9 with n = 1. Cf. A057813. (End)

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002

A005917 Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.

Original entry on oeis.org

1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1

Views

Author

Keywords

Comments

Final digits of a(n), i.e., a(n) mod 10, are repeated periodically with period of length 5 {1,5,5,5,9}. There is a symmetry in this list since the sum of two numbers equally distant from the ends is equal to 10 = 1 + 9 = 5 + 5 = 2*5. Last two digits of a(n), i.e., a(n) mod 100, are repeated periodically with period of length 50. - Alexander Adamchuk, Aug 11 2006
a(n) = VarScheme(n,2) in the scheme displayed in A128195. - Peter Luschny, Feb 26 2007
If Y is a 3-subset of a 2n-set X then, for n >= 2, a(n-2) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
The numbers are the constant number found in magic squares of order n, where n is an odd number, see the comment in A006003. A Magic Square of side 1 is 1; 3 is 15; 5 is 65 and so on. - David Quentin Dauthier, Nov 07 2008
Two times the area of the triangle with vertices at (0,0), ((n - 1)^2, n^2), and (n^2, (n - 1)^2). - J. M. Bergot, Jun 25 2013
Bisection of A006003. - Omar E. Pol, Sep 01 2018
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals a(n+1). The first five rows of array M are [1, 7, 17, 31, 49, ...]; [3, 5, 15, 29, 47, ...]; [9, 11, 13, 27, 45, ...]; [19, 21, 23, 25, 43, ...]; [33, 35, 37, 39, 41, ...]. - J. M. Bergot, Jul 16 2013 [This contribution was moved here from A047926 by Petros Hadjicostas, Mar 08 2021.]
For n>=2, these are the primitive sides s of squares of type 2 described in A344332. - Bernard Schott, Jun 04 2021
(a(n) + 1) / 2 = A212133(n) is the number of cells in the n-th rhombic-dodecahedral polycube. - George Sicherman, Jan 21 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
  • E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A063493, A063494, A063495, A063496.
Column k=3 of A047969.

Programs

  • Haskell
    a005917 n = a005917_list !! (n-1)
    a005917_list = map sum $ f 1 [1, 3 ..] where
       f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Magma
    [n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
    
  • Mathematica
    Table[n^4-(n-1)^4,{n,40}]  (* Harvey P. Dale, Apr 01 2011 *)
    #[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *)
    Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
  • PARI
    a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
    
  • Python
    A005917_list, m = [], [24, -12, 2, 1]
    for _ in range(10**2):
        A005917_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015

Formula

a(n) = (2*n - 1)*(2*n^2 - 2*n + 1).
Sum_{i=1..n} a(i) = n^4 = A000583(n). First differences of A000583.
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
More generally, g.f. for n^m - (n - 1)^m is Euler(m, x)/(1 - x)^m, where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292). E.g.f.: x*(exp(y/(1 - x)) - exp(x*y/(1 - x)))/(exp(x*y/(1 - x))-x*exp(y/(1 - x))). - Vladeta Jovovic, May 08 2002
a(n) = sum of the next (2*n - 1) odd numbers; i.e., group the odd numbers so that the n-th group contains (2*n - 1) elements like this: (1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31), ... E.g., a(3) = 65 because 9 + 11 + 13 + 15 + 17 = 65. - Xavier Acloque, Oct 11 2003
a(n) = 2*n - 1 + 12*Sum_{i = 1..n} (i - 1)^2. - Xavier Acloque, Oct 16 2003
a(n) = (4*binomial(n,2) + 1)*sqrt(8*binomial(n,2) + 1). - Paul Barry, Mar 14 2004
Binomial transform of [1, 14, 36, 24, 0, 0, 0, ...], if the offset is 0. - Gary W. Adamson, Dec 20 2007
Sum_{i=1..n-1}(a(i) + a(i+1)) = 8*Sum_{i=1..n}(i^3 + i) = 16*A002817(n-1) for n > 1. - Bruno Berselli, Mar 04 2011
a(n+1) = a(n) + 2*(6*n^2 + 1) = a(n) + A005914(n). - Vincenzo Librandi, Mar 16 2011
a(n) = -a(-n+1). a(n) = (1/6)*(A181475(n) - A181475(n-2)). - Bruno Berselli, Sep 26 2011
a(n) = A045975(2*n-1,n) = A204558(2*n-1)/(2*n - 1). - Reinhard Zumkeller, Jan 18 2012
a(n+1) = Sum_{k=0..2*n+1} (A176850(n,k) - A176850(n-1,k))*(2*k + 1), n >= 1. - L. Edson Jeffery, Nov 02 2012
a(n) = A005408(n-1) * A001844(n-1) = (2*(n - 1) + 1) * (2*(n - 1)*n + 1) = A000290(n-1)*12 + 2 + a(n-1). - Bruce J. Nicholson, May 17 2017
a(n) = A007588(n) + A007588(n-1) = A000292(2n-1) + A000292(2n-2) + A000292(2n-3) = A002817(2n-1) - A002817(2n-2). - Bruce J. Nicholson, Oct 22 2017
a(n) = A005898(n-1) + 6*A000330(n-1) (cf. Deza, Deza, 2012, p. 123, Section 2.6.2). - Felix Fröhlich, Oct 01 2018
a(n) = A300758(n-1) + A005408(n-1). - Bruce J. Nicholson, Apr 23 2020
G.f.: polylog(-4, x)*(1-x)/x. See the Simon Plouffe formula above (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A344332 Side s of squares of type 2 that can be tiled with squares of two different sizes so that the number of large or small squares is the same.

Original entry on oeis.org

15, 30, 45, 60, 65, 75, 90, 105, 120, 130, 135, 150, 165, 175, 180, 195, 210, 225, 240, 255, 260, 270, 285, 300, 315, 325, 330, 345, 350, 360, 369, 375, 390, 405, 420, 435, 450, 455, 465, 480, 495, 510, 520, 525, 540, 555, 570, 585, 600, 615, 630, 645, 650, 660, 671, 675, 690, 700, 705, 715, 720, 735, 738, 750, 765, 780, 795, 810, 825, 840, 845, 855, 870, 875, 885, 900
Offset: 1

Views

Author

Bernard Schott, May 20 2021

Keywords

Comments

This sequence is relative to the generalization of the 4th problem proposed for the pupils in grade 6 during the 19th Mathematical Festival at Moscow in 2008 (see A344330).
There are two types of solutions, the second one is proposed here, while type 1 is described in A344331.
If m is a term and k > 1, k * m is another term.
Every term (primitive or not primitive) is the side of an elementary square of type 2 (see A346263).
Some notations: s = side of the tiled square, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
-> Primitive squares
Side s of primitive squares of type 2 must satisfy the Diophantine equation s^2 = z * (a^2+b^2) with the conditions a^2+b^2 = c^2 and gcd(a, b, c) = 1.
In this case, q = a/(c-b) must be odd, and side s = q*c = a*c/(c-b) = (a+b)*c/a with a number of squares z = q^2 = (a/(c-b))^2 = ((b+c)/a)^2.
Indeed, these conditions give exactly the following solutions for n >= 2: s = n^4-(n-1)^4 (A005917), a = 2*n-1 (A005408), b = 2*n*(n-1) (A046092), c = 2*n*(n-1)+1 (A001844), z = (2*n-1)^2 (A016754); this results come from the identity:
(n^4 - (n-1)^4)^2 = (2*n-1)^2 * ((2*n-1)^2 + (2*n*(n-1))^2).
For n >= 2, every primitive square is composed by a square S1 of z = (2*n-1)^2 large squares with side b = 2*n*(n-1), then an edge on two sides of this square S1 of z = (2*n-1)^2 small squares with side a = 2*n-1.
See example with design of square of side s = 15 with a = 3, b = 4, c = 5, q = 3, z = 9, obtained with n= 2.
-> Non-primitive squares
If s is the side of a primitive square of type 2, then every k * s, k > 1 is a non-primitive term that gives two distinct tilings of type 2.
The square ks X ks can be tiled with z = q^2 = (2n-1)^2 = (a/(c-b))^2 = ((b+c)/a)^2 squares of side ka and of side kb, but also,
The square ks X ks can be tiled with z = k^2*q^2 = ((2n-1)*k)^2 = (k*a/(c-b))^2 = (k*(b+c)/a)^2 squares of side a and of side b (see example).

Examples

			Primitive square with s = 15:
  a = 3, b = 4, c = 5, s = 15, z = 9; s = 15 is the side of primitive square, with  z = 9 squares of size 3 x 3 and 9 squares of size 4 x 4
Non-primitive square k*s = 2*15 = 30:
  a = 3, b = 4, c = 5, s = 30, z = 36, this square is obtained with 4 copies of the primitive square as below.
  a = 6, b = 8, c = 10, s = 30, z = 9, this square and its tiling are exactly as the primitive square with scale 2.
               b = 4 (or = 8)     a = 3 (or = 6)
            ________ ________ ________ ______ ______________________________
           |        |        |        |      |                              |
           |        |        |        |      |                              |
           |        |        |        |______|                              |
           |_______ |________|________|      |                              |
           |        |        |        |      |                              |
           |        |        |        |______|                              |
           |        |        |        |      |                              |
           |________|________|________|      |                              |
           |        |        |        |______|                              |
           |        |        |        |      |                              |
           |        |        |        |      |                              |
           |_____ __|___ ____|_ ______|______|                              |
           |     |      |      |      |      |                              |
           |     |      |      |      |      |                              |
           |_____|______|______|______|______|______________________________|
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |                                 |                              |
           |_________________________________|______________________________|
                      s = 15               s = 30
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Programs

  • PARI
    pts(lim) = my(v=List(), m2, s2, h2, h); for(middle=4, lim-1, m2=middle^2; for(small=1, middle, s2=small^2; if(issquare(h2=m2+s2, &h), if(h>lim, break); listput(v, [small, middle, h])))); vecsort(Vec(v)); \\ A009000
    isdp4(s) = my(k=1, x); while(((x=k^4 - (k-1)^4) <= s), if (x == s, return (1)); k++); return(0);
    isokp2(s) = {if (!isdp4(s), return(0)); if (s % 2, my(vp = pts(s)); for (i=1, #vp, my(vpi = vp[i], a = vpi[1], b = vpi[2], c = vpi[3]); if (a*c/(c-b) == s, return(1)); ); ); }
    isok2(s) = {if (isokp2(s), return (1)); fordiv(s, d, if ((d>1) || (dMichel Marcus, Jun 04 2021

A344331 Side s of squares of type 1 that can be tiled with squares of two different sizes so that the number of large or small squares is the same.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 68, 70, 78, 80, 90, 100, 110, 120, 130, 136, 140, 150, 156, 160, 170, 180, 190, 200, 204, 210, 220, 222, 230, 234, 240, 250, 260, 270, 272, 280, 290, 300, 310, 312, 320, 330, 340, 350, 360, 370, 380, 390, 400, 408, 410, 420, 430, 440, 444, 450, 460, 468, 470
Offset: 1

Views

Author

Bernard Schott, May 20 2021

Keywords

Comments

This sequence is relative to the generalization of the 4th problem proposed for the pupils in grade 6 during the 19th Mathematical Festival at Moscow in 2008 (see A344330).
There are two types of solutions, the first one is proposed here, while type 2 is described in A344332.
Some notations: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
-> Primitive squares
Side s of primitive squares of type 1 must satisfy the Diophantine equation s^2 = z * (a^2+b^2), with gcd(a, b) = 1, and without using the conditions a^2+b^2 = c^2, when a and b belong to a Pythagorean triple (a, b, c).
In this case, the sides of the primitive squares of type 1 are s = a*b * (a^2+b^2) with 1 <= a < b and gcd(a, b) = 1 (A344333), then corresponding z = (a*b)^2 * (a^2+b^2) (A344334).
Every primitive square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
In particular: for a = 1, b = n, s = n*(n^2+1) form the subsequence A034262 \ {0, 1} and z = n^2*(n^2+1) form the subsequence A071253 \ {0, 2}).
See example with design for a square of side s = 10 with a = 1, b = 2, m = 10, z = 20.
-> Non-primitive squares
If s is the side of a primitive square of type 1 with z squares of side a and z squares of side b, then every k * s is a non-primitive term that gives one or two distinct tilings of type 1, depending of value of k:
- For every k > 1, the square ks X ks can be tiled with k^2*z squares of side a and k^2*z squares of side b (see example).
- For every k = r^4, r>1, the square ks X ks also can be tiled with z squares of side ka and z squares of side kb.
---> Consequences:
1) For every pair (a, b), 1 <= a < b, there is a square of side s = a*b * (a^2+b^2) that can be tiled with squares of side a and side b so that the number z of squares of side a and side b is the same, this number z = (a*b)^2 * (a^2+b^2).
2) If q is a term and K > 1, K * q is another term.
3) Every term is even.

Examples

			Primitive square with s = 10:
   a = 1, b = 2, s = 10, m = 10, z = 20, and
Non-primitive square with s = 20:
   a = 1, b = 2, s = 20, m = 40, z = 80.
      ___ ___ _ ___ ___ _ ___________________
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|                   |
     |   |   |_|   |   |_|                   |
     |___|___|_|___|___|_|___________________|
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |                   |                   |
     |___________________|___________________|
with respectively m = 10 (and m = 40) elementary 2 X 5 rectangles as below:
          ___ ___ _
         |   |   |_|
         |___|___|_|
There are these three possibilities:
- 10 is a primitive term because the square 10 X 10 can be tiled with 20 squares of size 1 X 1 and 20 squares of size 2 X 2, and no smaller square can be tiled with a same number of squares of size 1 X 1 and of squares of size 2 X 2.
- 20 is a non-primitive term because the square 20 X 20 can be tiled with 80 squares of size 1 X 1 and 80 squares of size 2 X 2.
- 30 is a primitive term because the square 30 X 30 can be tiled with 90 squares of size 1 X 1 and 90 squares of size 3 X 3, and no smaller square can be tiled with a same number of squares of size 1 X 1 and of squares of size 3 X 3,
  but also, 30 is a non-primitive term because the square 30 X 30 can be tiled with 180 squares of size 1 X 1 and 180 squares of size 2 X 2.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Programs

  • PARI
    isokp1(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->x*y*(x^2+y^2), [1..m]), s); }
    isok(s) = {if (isokp1(s), return (1)); fordiv(s, d, if ((d>1) || (dMichel Marcus, Dec 22 2021

A344333 Primitive side of squares of type 1 (A344331) that are tiled with squares of two different sizes so that the number of large or small squares is the same.

Original entry on oeis.org

10, 30, 68, 78, 130, 222, 290, 300, 350, 510, 520, 738, 742, 820, 1010, 1218, 1342, 1530, 1740, 1752, 1820, 1830, 2210, 2590, 2750, 2758, 3270, 3390, 3492, 3560, 3570, 4112, 4290, 4498, 4770, 4930, 5850, 6028, 6328, 6870, 6878, 6942, 8020, 8030, 8190, 8610, 9282, 9620, 9962
Offset: 1

Views

Author

Bernard Schott, Jun 01 2021

Keywords

Comments

Some notations: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form s = a*b * (a^2+b^2) with gcd(a, b) = 1, then corresponding z = (a*b)^2 * (a^2+b^2) (see A344334).
Every primitive square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
If a = 1 and b = n > 1, then sides of squares s = n * (n^2+1) form the subsequence A034262 \ {0, 1}.
Every term is even.

Examples

			Square 10 x 10 with a = 1, b = 2, s = 10, z = 20.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_| with 10 elementary 2 x 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Programs

  • PARI
    isok(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->if (gcd(x,y)==1, x*y*(x^2+y^2), 0), [1..m]), s); } \\ Michel Marcus, Dec 22 2021

A344334 a(n) is the number of large or small squares that are used to tile primitive squares of type 1 whose length of side is A344333(n).

Original entry on oeis.org

20, 90, 272, 468, 650, 1332, 2900, 3600, 2450, 7650, 4160, 6642, 10388, 16400, 10100, 25578, 14762, 27540, 20880, 42048, 50960, 54900, 28730, 90650, 60500, 38612, 98100, 50850, 125712, 142400, 149940, 65792, 141570, 116948, 214650, 83810, 105300, 265232, 354368
Offset: 1

Views

Author

Bernard Schott, Jun 02 2021

Keywords

Comments

Some notations: s = side of the tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form z = (a*b)^2 * (a^2+b^2) with gcd(a, b) = 1.
Every primitive square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
This sequence is not increasing: a(9) = 2450 < a(8) = 3600.
Every term is even.
If a = 1 and b = n > 1, then number of squares z = n^2 * (n^2+1) is in A071253 \ {0,2}.

Examples

			Square 10 x 10 with a = 1, b = 2, s = 10, z = 20.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_| with 10 elementary 2 x 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Cf. A071253 \ {0,2} is a subsequence.

A345286 a(n) is the number of large or small squares that are used to tile primary squares of type 1 (see A344331) whose side length is A345285(n).

Original entry on oeis.org

20, 90, 272, 468, 650, 1280, 1332, 2900, 3600, 2450, 7650, 5760, 4160, 6642, 10388, 810, 16400, 10100, 1088, 25578, 29952, 14762, 27540, 20880, 42048, 50960, 54900, 41600, 28730, 65610, 81920, 90650, 60500, 38612, 98100, 50850, 125712, 85248, 142400, 149940
Offset: 1

Views

Author

Bernard Schott, Jun 13 2021

Keywords

Comments

Notation: s = side of the primary tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form z = (a*b)^2 * (a^2+b^2) = a*b*s with a < b.
Every such primary square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
This sequence is not increasing: a(10) = 2450 < a(9) = 3600.
If gcd(a, b) = 1, then number of squares z = a*b * (a^2+b^2) is in A344334.
If a = 1 and b = n > 1, then number of squares z = n^2 * (n^2+1) is in A071253 \ {0,2}.
Every term is even.

Examples

			The primary square with side A345285(1) = 10 can be tiled with a(1) = 20 small squares of side a = 1 and 20 large squares of side b = 2.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_| with 10 elementary 2 x 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
The primary square with side A345285(6) = 160 can be tiled with a(6) = 1280 small squares of side a = 2 and 1280 large squares of side b = 4.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

A345287 a(n) is the number of distinct possible tilings of type 1 for squares with side = A344331(n) and that can be tiled with squares of two different sizes so that the numbers of large or small squares are equal.

Original entry on oeis.org

1, 2, 3, 3, 2, 6, 1, 2, 1, 4, 5, 4, 2, 9, 3, 2, 4, 6, 2, 5, 2, 10, 2, 6, 2, 6, 4, 1, 2, 2, 12, 3, 6, 7, 3, 6, 3, 13, 2, 3, 6, 6, 6, 5, 15, 2, 4, 10, 8, 4, 2, 12, 2, 6, 2, 10, 4, 4, 2, 2, 15, 3, 6, 7, 10, 2, 14, 4, 2, 4, 8, 6, 6, 2, 20, 2, 3, 4, 4, 10, 7, 6, 12, 2, 2, 10, 6
Offset: 1

Views

Author

Bernard Schott, Jun 14 2021

Keywords

Comments

Every side of square of type 1 in A344331 is also the side of an elementary square of type 1. An elementary square of type 1 is the smallest square that can be tiled with squares of two different sides a < b and so that the numbers of small and large squares are equal.
Some notation: s = side of the tiled square, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
a(n) = 1 iff A344331(n) is a term of A344333 that is not a multiple of another term of A344333 (10, 68, 78, 222, ...).
The first side that is a multiple of two primitive sides is 30 = 3*10 = 1*30 (see 2nd example).

Examples

			For a(1), A344331(1) = 10, then, with the formula, we get a(1) = tau(A344331(1)/A344333(1)) = tau(10/10) = tau(1) = 1. This unique corresponding tiling of this square 10 x 10 of type 1 with side s = 10 consists of z = 20 squares whose sides (a,b) = (1,2) (see below).
          ___ ___ _ ___ ___ _
         |   |   |_|   |   |_|
         |___|___|_|___|___|_|
         |   |   |_|   |   |_|
         |___|___|_|___|___|_|
         |   |   |_|   |   |_|
         |___|___|_|___|___|_|
         |   |   |_|   |   |_|
         |___|___|_|___|___|_|
         |   |   |_|   |   |_|
         |___|___|_|___|___|_|
                a(1) = 1
For a(3), A344331(3) = 30, then, with the formula, we get a(3) = tau(A344331(3)/A344333(1)) + tau(A344331(3)/A344333(2)) = tau(30/10) + tau(30/30) = tau(3) + tau(1) = 3. The 3 corresponding tilings of the square 30 x 30 of type 1 with side s = 30 consists of:
-> from 30 = 3*A344333(1) = 3*10, square with side s = 30 can be tiled with z = 180 squares with sides (a,b) = (1,2), indeed with 9 copies of primitive square 10 x 10, as above.
-> from 30 = 1*A344331(3) = 1*30, square with side s = 30 can be tiled with z = 20 squares with sides (a,b) = (3,6), indeed, it is the above square with scale 3.
-> from 30 = 1*A344331(3) = 1*30, square with side s = 30 can also be tiled with z = 90 squares with sides (a,b) = (1,3), indeed that is primitive square 30 x 30 with squares (a,b) = (1,3).
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Programs

  • PARI
    isokp1(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->x*y*(x^2+y^2), [1..m]), s); }
    isok1(s) = {if (isokp1(s), return (1)); fordiv(s, d, if ((d>1) || (dA344331
    isok3(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->if (gcd(x,y)==1, x*y*(x^2+y^2), 0), [1..m]), s); } \\ A344333
    sd(x) = sumdiv(x, d, if (isok3(d), numdiv(x/d)));
    lista(nn) = my(v1 = select(isok1, [1..nn])); apply(sd, v1); \\ Michel Marcus, Dec 22 2021

Formula

a(n) = Sum_{(k=1..n) & (A344333(k)|A344331(n))} tau(A344331(n)/A344333(k)).
a(n) = Sum_{(d | A344331(n)) & (d in A344333)} tau(A344331(n)/d) where tau is A000005. - Michel Marcus, Dec 22 2021

Extensions

Corrected and extended by Michel Marcus, Dec 22 2021

A345285 Sides of primary squares of type 1 (A344331). A primary square of type 1 is the smallest square that can be tiled with squares of two different sides a < b, so that the numbers of small and large squares are equal.

Original entry on oeis.org

10, 30, 68, 78, 130, 160, 222, 290, 300, 350, 480, 510, 520, 738, 742, 810, 820, 1010, 1088, 1218, 1248, 1342, 1530, 1740, 1752, 1820, 1830, 2080, 2210, 2430, 2560, 2590, 2750, 2758, 3270, 3390, 3492, 3552, 3560, 3570, 4112, 4290, 4498, 4640, 4770, 4800, 4930, 5508, 5600, 5850, 6028, 6250
Offset: 1

Views

Author

Bernard Schott, Jun 13 2021

Keywords

Comments

Notation: s = side of the primary tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form s = a*b * (a^2+b^2), with 1 <= a < b, and corresponding z = (a*b)^2 * (a^2+b^2) (A345286).
Every such primary square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
If gcd(a, b) = 1, then primitive sides of square s = a*b * (a^2+b^2) are in A344333 that is a subsequence.
If a = 1 and b = n > 1, then sides of squares s = n * (n^2+1) form the subsequence A034262 \ {0, 1}.
If q is a term and integer r > 1, then q * r^4 is another term.
Every term is even.

Examples

			a(1) = 10 and the primary square 10 X 10 can be tiled with A345286(1) = 20 small squares with side a = 1 and 20 large squares with side b = 2.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|     with 10 elementary 2 X 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
a(6) = 160 is the first side of an primary square that is not primitive and it corresponds to (a,b) = (2,4); the square 160 X 160 can be tiled with A345286(6) = 1280 small squares with side a = 2 and 1280 large squares with side b = 4.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs

Showing 1-10 of 11 results. Next