A346265 a(n) is the number of distinct possible tilings of type 1 (A344331) or of type 2 (A344332) for a square whose side is A344330(n).
1, 1, 2, 5, 3, 2, 2, 9, 1, 1, 2, 2, 1, 4, 9, 4, 2, 2, 13, 5, 3, 2, 4, 10, 2, 5, 2, 2, 1, 16, 2, 4, 6, 2, 10, 4, 1, 4, 2, 2, 17, 3, 2, 9, 13, 3, 6, 2, 3, 19, 2, 3, 4, 6, 2, 10, 6, 2, 7, 23, 2, 2, 3, 4, 18, 8, 4, 4, 2, 18, 2, 2, 6, 2, 18, 2, 4, 2, 4, 2, 2, 21, 3, 4, 6, 11, 14, 6, 2, 23
Offset: 1
Keywords
Examples
-> A344330(1) = A344331(1) = 10 and there is no k_2 such that A344330(1) = A344332(k_2) = 10, then a(1) = A345287(1) = 1 (example below of type 1): Primitive square 10 X 10 corresponding to a(1) = 1 with a = 1, b = 2, s = 10, z = 20: ___ ___ _ ___ ___ _ | | |_| | |_| |___|___|_|___|___|_| | | |_| | |_| |___|___|_|___|___|_| | | |_| | |_| |___|___|_|___|___|_| | | |_| | |_| |___|___|_|___|___|_| | | |_| | |_| |___|___|_|___|___|_| -> A344330(2) = A344332(1) = 15 and there is no k_1 such that A344330(2) = A344331(k_1) = 15, then a(2) = A346264(1) = 1 (example below of type 2): Primitive square 15 X 15 corresponding to a(2) = 1 with a = 3, b = 4, c = 5, s = 15, z = 9: ________ ________ ________ ______ | | | | | | | | | | | | | |______| |_______ |________|________| | | | | | | | | | |______| | | | | | |________|________|________| | | | | |______| | | | | | | | | | | |_____ __|___ ____|_ ______|______| | | | | | | | | | | | | |_____|______|______|______|______| -> A344330(4) = A344331(3) = A344332(2) = 30, then a(4) = A345287(3) + A346264(2) = 3+2 = 5 (see link with the corresponding 5 distinct tilings). -> A344330(6) = A344332(3) = 45 and there is no k_1 such that A344330(6) = A344331(k_1) = 45, then a(6) = A346264(3) = 2.
References
- Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.
Links
- Bernard Schott, The 5 distinct tilings corresponding to a(4) = 5.
Programs
-
PARI
\\ isok1 from A344331 and isok2 from A344332 isok3(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->if (gcd(x, y)==1, x*y*(x^2+y^2), 0), [1..m]), s); } \\ A344333 sd7(x) = sumdiv(x, d, if (isok3(d), numdiv(x/d))); \\ A345287 isok7(k) = my(kk= sqrtnint(k\4, 3)+2); vecsearch(vector(kk, i, (i+1)^4 - i^4), k); \\ A005917 sd4(x) = sumdiv(x, d, if (isok7(d), numdiv(x/d))); \\ A346264 lista(nn) = {for (n=1, nn, my(b1 = isok1(n), b2 = isok2(n)); if (b1 || b2, my(x = 0); if (b1, x += sd7(n)); if (b2, x += sd4(n)); print1(x, ", ");););} \\ Michel Marcus, Dec 23 2021
Formula
Extensions
a(19),a(59),a(86),a(87) corrected by Bernard Schott, Dec 23 2021
Comments