cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A064751 a(n) = n*5^n - 1.

Original entry on oeis.org

4, 49, 374, 2499, 15624, 93749, 546874, 3124999, 17578124, 97656249, 537109374, 2929687499, 15869140624, 85449218749, 457763671874, 2441406249999, 12969970703124, 68664550781249, 362396240234374, 1907348632812499, 10013580322265624, 52452087402343749, 274181365966796874
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [n*5^n - 1: n in [1..30]]; // Vincenzo Librandi, Jun 21 2018
  • Mathematica
    Table[n*5^n-1,{n,20}] (* or *) LinearRecurrence[{11,-35,25},{4,49,374},20] (* Harvey P. Dale, Jun 25 2017 *)
    CoefficientList[Series[(4 + 5 x - 25 x^2) / ((1 - 5 x)^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 21 2018 *)
  • PARI
    a(n) = { n*5^n - 1 } \\ Harry J. Smith, Sep 24 2009
    

Formula

G.f.: x*(4 + 5*x - 25*x^2)/((1 - 5*x)^2*(1 - x)). - Vincenzo Librandi, Jun 21 2018
a(n) = A036291(n) - 1. - Michel Marcus, Jun 21 2018
From Elmo R. Oliveira, May 05 2025: (Start)
E.g.f.: 1 + exp(x)*(5*x*exp(4*x) - 1).
a(n) = 11*a(n-1) - 35*a(n-2) + 25*a(n-3) for n > 3. (End)

A171607 Expressible as A*B^A in a nontrivial way.

Original entry on oeis.org

8, 18, 24, 32, 50, 64, 72, 81, 98, 128, 160, 162, 192, 200, 242, 288, 324, 338, 375, 384, 392, 450, 512, 578, 648, 722, 800, 882, 896, 968, 1024, 1029, 1058, 1152, 1215, 1250, 1352, 1458, 1536, 1568, 1682, 1800, 1922, 2048, 2178, 2187, 2312, 2450, 2500, 2592
Offset: 1

Views

Author

Robert Munafo, Dec 12 2009

Keywords

Examples

			8=2*2^2. 24=3*2^3. 375=3*5^3.
		

Crossrefs

Cf. A171606. Union of the "KN^K" sequences A001105, A117642, A141046, ... or of the "NK^N" sequences A036289, A036290, A018215, A036291, ... but omitting the trivial initial terms.

Programs

  • PARI
    is(n)=if(n<8, return(0)); for(a=2,logint(n\2,2), if(n%a==0 && ispower(n/a,a), return(1))); 0 \\ Charles R Greathouse IV, Feb 19 2017
    
  • PARI
    list(lim)=my(v=List()); if(lim<8,return([])); for(a=2,logint(lim\2,2), for(b=2,sqrtnint(lim\a,a), listput(v,a*b^a))); Set(v) \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(n) = 2n^2 - O(n^(5/3)). - Charles R Greathouse IV, Feb 19 2017

A050916 a(n) = n*5^n + 1.

Original entry on oeis.org

1, 6, 51, 376, 2501, 15626, 93751, 546876, 3125001, 17578126, 97656251, 537109376, 2929687501, 15869140626, 85449218751, 457763671876, 2441406250001, 12969970703126, 68664550781251, 362396240234376, 1907348632812501, 10013580322265626, 52452087402343751
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Programs

  • Magma
    [ n*5^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
  • Mathematica
    Table[n 5^n+1,{n,0,20}] (* or *) LinearRecurrence[{11,-35,25},{1,6,51},20] (* Harvey P. Dale, Sep 15 2011 *)

Formula

a(n) = 11*a(n-1) - 35*a(n-2) + 25*a(n-3); a(0)=1, a(1)=6, a(2)=51. - Harvey P. Dale, Sep 15 2011
G.f.: -(20*x^2-5*x+1)/((x-1)*(5*x-1)^2). - Colin Barker, Oct 14 2012
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 5*x*exp(4*x)).
a(n) = A036291(n) + 1. (End)

A158749 a(n) = n*9^n.

Original entry on oeis.org

0, 9, 162, 2187, 26244, 295245, 3188646, 33480783, 344373768, 3486784401, 34867844010, 345191655699, 3389154437772, 33044255768277, 320275094369454, 3088366981419735, 29648323021629456, 283512088894331673, 2701703435345984178, 25666182635786849691, 243153309181138576020
Offset: 0

Views

Author

Zerinvary Lajos, Mar 25 2009

Keywords

Crossrefs

Programs

Formula

a(n) = n*9^n.
From R. J. Mathar, Mar 26 2009: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) = A038299(n,1).
G.f.: 9*x/(1-9*x)^2. (End)
a(n) = A001019(n)*n. - Omar E. Pol, Mar 26 2009
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(9/8).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(10/9). (End)
E.g.f.: 9*x*exp(9*x). - Elmo R. Oliveira, Sep 09 2024

A219462 a(n) = Sum_{k = 1..2*n} binomial(2*n,k) * Fibonacci(2*k).

Original entry on oeis.org

0, 5, 75, 1000, 13125, 171875, 2250000, 29453125, 385546875, 5046875000, 66064453125, 864794921875, 11320312500000, 148184814453125, 1939764404296875, 25391845703125000, 332383575439453125, 4350957489013671875, 56954772949218750000, 745547657012939453125
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2012

Keywords

Crossrefs

Programs

  • Haskell
    a219462 = sum . zipWith (*) a001906_list . a034870_row
    
  • Mathematica
    Table[Sum[Binomial[2n,k]Fibonacci[2k],{k,2n}],{n,0,20}] (* Harvey P. Dale, Aug 26 2017 *)
  • PARI
    a(n) = sum(k = 1, 2*n, binomial(2*n,k) * fibonacci(2*k)); \\ Michel Marcus, Jan 26 2022

Formula

a(n) = Sum_{k=1..n} A034870(n,k)*A001906(k).
a(n) = 5^n * Fibonacci(2*n) = A000351(n) * A001906(n).
G.f.: 5*x/(25*x^2-15*x+1). - Colin Barker, Dec 03 2012
E.g.f.: 2*exp(15*x/2)*sinh(5*sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Oct 19 2023

A352081 Numbers of the form k*p^k, where k>1 and p is a prime.

Original entry on oeis.org

8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2022

Keywords

Comments

Each term in this sequence has a single presentation in the form k*p^k.

Examples

			8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
		

Crossrefs

Subsequences: A036289 \ {0, 2}, A036290 \ {0, 3}, A036291 \ {0, 5}, A036293 \ {0, 7}, A073113 \ {2}, A079704, A100042, A104126.

Programs

  • Mathematica
    addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]

Formula

Sum_{n>=1} 1/a(n) = -A143524 = gamma - B_1, where gamma is Euler's constant (A001620), and B_1 is Mertens's constant (A077761).

A364881 First significant digit of the decimal expansion of n/(2^n).

Original entry on oeis.org

5, 5, 3, 2, 1, 9, 5, 3, 1, 9, 5, 2, 1, 8, 4, 2, 1, 6, 3, 1, 1, 5, 2, 1, 7, 3, 2, 1, 5, 2, 1, 7, 3, 1, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 7, 3, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 3, 1, 7, 3, 1, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5
Offset: 1

Views

Author

Ejder Aysun, Aug 10 2023

Keywords

Comments

a(n) is also the first digit of n*5^n = A036291(n).

Examples

			n     n/(2^n)
1     0.5                            a(1) = 5
2     0.5                            a(2) = 5
3     0.375                          a(3) = 3
4     0.25                           a(4) = 2
5     0.15625                        a(5) = 1
6     0.9375                         a(6) = 9
7     0.0546875                      a(7) = 5
8     0.03125                        a(8) = 3
9     0.017578125                    a(9) = 1
10    0.009765625                    a(10) = 9
...
		

Crossrefs

Programs

  • Maple
    a:= n-> parse((""||(n*5^n))[1]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 18 2023
  • Mathematica
    Table[Floor[n/(2^n)/10^Floor[Log10[n/(2^n)]]], {n, 100000}]
  • Python
    def A364881(n): return (n*5**(m:=len(str((1<>n-m) % 10 # Chai Wah Wu, Aug 24 2023

Formula

a(n) = floor(n/(2^n)/10^floor(log_10(n/(2^n)))), for n > 0.
a(n) = floor(n/A000079(n)/10^floor(log_10(n/A000079(n)))).
a(n) = floor(A036291(n)/10^floor(log_10(A036291(n)))).
a(n) = A000030(A036291(n)).

A134574 Array, a(n,k) = total size of all n-length words on a k-letter alphabet, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 24, 18, 4, 5, 64, 81, 32, 5, 6, 160, 324, 192, 50, 6, 7, 384, 1215, 1024, 375, 72, 7, 8, 896, 4374, 5120, 2500, 648, 98, 8, 9, 2048, 15309, 24576, 15625, 5184, 1029, 128, 9, 10, 4608, 52488, 114688, 93750, 38880, 9604, 1536, 162, 10
Offset: 1

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			a(2,2) = 8 because there are 2^2 = 4 2-length words on a 2 letter alphabet, each of size 2 and 2*4 = 8.
Array begins:
==================================================================
n\k|  1     2       3        4         5         6          7  ...
---|--------------------------------------------------------------
1  |  1     2       3        4         5         6          7  ...
2  |  2     8      18       32        50        72         98  ...
3  |  3    24      81      192       375       648       1029  ...
4  |  4    64     324     1024      2500      5184       9604  ...
5  |  5   160    1215     5120     15625     38880      84035  ...
6  |  6   384    4374    24576     93750    279936     705894  ...
7  |  7   896   15309   114688    546875   1959552    5764801  ...
8  |  8  2048   52488   524288   3125000  13436928   46118408  ...
9  |  9  4608  177147  2359296  17578125  90699264  363182463  ...
... - _Franck Maminirina Ramaharo_, Aug 07 2018
		

Crossrefs

Cf. a(n, 1) = a(1, k) = A000027(n); a(n, 2) = A036289(n); a(n, 3) = A036290(n); a(n, 4) = A018215(n); a(n, 5) = A036291(n); a(n, 6) = A036292(n); a(n, 7) = A036293(n); a(n, 8) = A036294(n); a(2, k) = A001105(k); a(3, k) = A117642(k); a(n, n) = A007778(n); a(n, n+1) = A066274(n+1): sum[a(i-1, n-i+1), {i, 1, n}] = A062807(n).

Programs

  • Mathematica
    t[n_, k_] := Sum[k^n, {j, n}]; Table[ t[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 07 2018 *)

Formula

a(n,k) = n*k^n.
O.g.f. (by columns): (k*x)/(-1+k*x)^2.
E.g.f. (by columns): k*x*exp(k*x).
a(n,k) = Sum[k^n,{j,1,n}] = n*Sum[C(n,m)*(k-1)^m,{m,0,n}]. - Ross La Haye, Jan 26 2008
Showing 1-8 of 8 results.