cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A058331 a(n) = 2*n^2 + 1.

Original entry on oeis.org

1, 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243, 289, 339, 393, 451, 513, 579, 649, 723, 801, 883, 969, 1059, 1153, 1251, 1353, 1459, 1569, 1683, 1801, 1923, 2049, 2179, 2313, 2451, 2593, 2739, 2889, 3043, 3201, 3363, 3529, 3699, 3873, 4051
Offset: 0

Views

Author

Erich Friedman, Dec 12 2000

Keywords

Comments

Maximal number of regions in the plane that can be formed with n hyperbolas.
Also the number of different 2 X 2 determinants with integer entries from 0 to n.
Number of lattice points in an n-dimensional ball of radius sqrt(2). - David W. Wilson, May 03 2001
Equals A112295(unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Oct 07 2007
Binomial transform of A166926. - Gary W. Adamson, May 03 2008
a(n) = longest side a of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (2n^2 + 1, 2n^2 + 2, 4n^2 + 1).
{a(k): 0 <= k < 3} = divisors of 9. - Reinhard Zumkeller, Jun 17 2009
Number of ways to partition a 3*n X 2 grid into 3 connected equal-area regions. - R. H. Hardin, Oct 31 2009
Let A be the Hessenberg matrix of order n defined by: A[1, j] = 1, A[i, i] := 2, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 3, a(n - 1) = coeff(charpoly(A, x), x^(n - 2)). - Milan Janjic, Jan 26 2010
Except for the first term of [A002522] and [A058331] if X = [A058331], Y = [A087113], A = [A002522], we have, for all other terms, Pell's equation: [A058331]^2 - [A002522]*[A087113]^2 = 1; (X^2 - A*Y^2 = 1); e.g., 3^2 -2*2^2 = 1; 9^2 - 5*4^2 = 1; 129^2 - 65*16^2 = 1, and so on. - Vincenzo Librandi, Aug 07 2010
Niven (1961) gives this formula as an example of a formula that does not contain all odd integers, in contrast to 2n + 1 and 2n - 1. - Alonso del Arte, Dec 05 2012
Numbers m such that 2*m-2 is a square. - Vincenzo Librandi, Apr 10 2015
Number of n-tuples from the set {1,0,-1} where at most two elements are nonzero. - Michael Somos, Oct 19 2022
a(n) gives the x-value of the integral solution (x,y) of the Pellian equation x^2 - (n^2 + 1)*y^2 = 1. The y-value is given by 2*n (see Tattersall). - Stefano Spezia, Jul 23 2025

Examples

			a(1) = 3 since (0 0 / 0 0), (1 0 / 0 1) and (0 1 / 1 0) have different determinants.
G.f. = 1 + 3*x + 9*x^2 + 19*x^3 + 33*x^4 + 51*x^5 + 73*x^6 + ... - _Michael Somos_, Oct 19 2022
		

References

  • Ivan Niven, Numbers: Rational and Irrational, New York: Random House for Yale University (1961): 17.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.

Crossrefs

Cf. A000124.
Second row of array A099597.
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A112295.
Column 2 of array A188645.
Cf. A001105 and A247375. - Bruno Berselli, Sep 16 2014

Programs

  • Haskell
    a058331 = (+ 1) . a001105  -- Reinhard Zumkeller, Dec 13 2014
    
  • Magma
    [2*n^2 + 1 : n in [0..100]]; // Wesley Ivan Hurt, Feb 02 2017
  • Mathematica
    b[g_] := Length[Union[Map[Det, Flatten[ Table[{{i, j}, {k, l}}, {i, 0, g}, {j, 0, g}, {k, 0, g}, {l, 0, g}], 3]]]] Table[b[g], {g, 0, 20}]
    2*Range[0, 49]^2 + 1 (* Alonso del Arte, Dec 05 2012 *)
  • PARI
    a(n)=2*n^2+1 \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

G.f.: (1 + 3x^2)/(1 - x)^3. - Paul Barry, Apr 06 2003
a(n) = M^n * [1 1 1], leftmost term, where M = the 3 X 3 matrix [1 1 1 / 0 1 4 / 0 0 1]. a(0) = 1, a(1) = 3; a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). E.g., a(4) = 33 since M^4 *[1 1 1] = [33 17 1]. - Gary W. Adamson, Nov 11 2004
a(n) = cosh(2*arccosh(n)). - Artur Jasinski, Feb 10 2010
a(n) = 4*n + a(n-1) - 2 for n > 0, a(0) = 1. - Vincenzo Librandi, Aug 07 2010
a(n) = (((n-1)^2 + n^2))/2 + (n^2 + (n+1)^2)/2. - J. M. Bergot, May 31 2012
a(n) = A251599(3*n) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = sqrt(8*(A000217(n-1)^2 + A000217(n)^2) + 1). - J. M. Bergot, Sep 03 2015
E.g.f.: (2*x^2 + 2*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017
a(n) = A002378(n) + A002061(n). - Bruce J. Nicholson, Aug 06 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(2))*coth(Pi/sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(2))*csch(Pi/sqrt(2)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(2))*sinh(Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(2))*csch(Pi/sqrt(2)). (End)
From Leo Tavares, May 23 2022: (Start)
a(n) = A000384(n+1) - 3*n.
a(n) = 3*A000217(n) + A000217(n-2). (End)
a(n) = a(-n) for all n in Z and A037235(n) = Sum_{k=0..n-1} a(k). - Michael Somos, Oct 19 2022

Extensions

Revised description from Noam Katz (noamkj(AT)hotmail.com), Jan 28 2001

A185880 Second accumulation array of A185877, by antidiagonals.

Original entry on oeis.org

1, 5, 3, 16, 17, 6, 40, 56, 38, 10, 85, 140, 128, 70, 15, 161, 295, 320, 240, 115, 21, 280, 553, 670, 600, 400, 175, 28, 456, 952, 1246, 1250, 1000, 616, 252, 36, 705, 1536, 2128, 2310, 2075, 1540, 896, 348, 45, 1045, 2355, 3408, 3920, 3815, 3185, 2240, 1248, 465, 55, 1496, 3465, 5190, 6240, 6440, 5831, 4620, 3120, 1680, 605, 66, 2080, 4928, 7590, 9450, 10200, 9800, 8428, 6420, 4200, 2200
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
   1,    5,   16,   40,   85
   3,   17,   56,  140,  295
   6,   38,  128,  320,  670
  10,   70,  240,  600, 1250
		

Crossrefs

Antidiagonal sums: A037235.
diag (1,5,...): A056108 (4th spoke on hexagonal wheel);
diag (3,11,...): A056106 (2nd spoke on hexagonal wheel);
diag (7,19,...): A003215 (hex numbers);
diag (13,29,...): A144391.

Programs

  • Mathematica
    (* This program generates A185878 first and then generates A185880 as the accumulation array of A185878. *)
    f[n_,k_]:=(k*n/6)(7-3k+2k^2-3n+3kn);
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185878 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}];
    FullSimplify[s[n,k]]
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185880 *)
    f[n_, k_] := (1/72)*k*(1 + k)*n*(1 + n)*(16 - k + 3 *k^2 + 4 *(-1 + k) *n); Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)

Formula

T(n,k) = C(k,2)*C(n,2)*(3*k^2+4*k*n-k-4*n+16)/18, k>=1, n>=1.

A257055 a(n) = n*(n + 1)*(n^2 - n + 3)/6.

Original entry on oeis.org

0, 1, 5, 18, 50, 115, 231, 420, 708, 1125, 1705, 2486, 3510, 4823, 6475, 8520, 11016, 14025, 17613, 21850, 26810, 32571, 39215, 46828, 55500, 65325, 76401, 88830, 102718, 118175, 135315, 154256, 175120, 198033, 223125, 250530, 280386, 312835, 348023, 386100
Offset: 0

Views

Author

Bruno Berselli, Apr 15 2015

Keywords

Comments

Partial sums of A037235.
After 0, this sequence is the 2nd diagonal of the square array in A080851.
For n > 2, a(n)-n is the 4th column of the triangular array in A208657.

Crossrefs

Cf. similar sequences listed in A256859.

Programs

  • Magma
    [n*(n+1)*(n^2-n+3)/6: n in [0..40]];
    
  • Mathematica
    Table[n (n + 1) (n^2 - n + 3)/6, {n, 40}]
  • PARI
    vector(40, n, n--; n*(n+1)*(n^2-n+3)/6)
    
  • Sage
    [n*(n+1)*(n^2-n+3)/6 for n in (0..40)]

Formula

G.f.: x*(1 + 3*x^2)/(1 - x)^5.
a(n) = 3*A000332(n+1) + A000332(n+3).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, May 27 2021

A134249 Triangle read by rows, taken from the lower triangular matrix (M * A000012 + A000012 * M) - A000012; where M = lower triangular matrix with (1,1,1,...) in the main diagonal and the triangular numbers in the subdiagonal and A000012 = (1; 1,1; 1,1,1; ...).

Original entry on oeis.org

1, 3, 1, 5, 7, 1, 8, 10, 13, 1, 12, 14, 17, 21, 1, 17, 19, 22, 26, 31, 1, 23, 25, 28, 32, 37, 43, 1, 30, 32, 35, 39, 44, 50, 57, 1, 38, 40, 43, 47, 52, 58, 65, 73, 1, 47, 49, 52, 56, 61, 67, 74, 82, 91, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 15 2007

Keywords

Comments

Row sums = A037235: (1, 4, 13, 32, 65, 116, ...). Left column = A134250: (1, 3, 5, 8, 12, 17, 23, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  7,  1;
   8, 10, 13,  1;
  12, 14, 17, 21,  1;
  17, 19, 22, 26, 31,  1;
  23, 25, 28, 32, 37, 43,  1;
  ...
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Nov 01 2009
Showing 1-4 of 4 results.