cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A038031 Position reached by frog in A038029. A038026(A038029(n)).

Original entry on oeis.org

2, 19, 19, 43, 103, 43, 137, 149, 103, 83, 71, 233, 137, 149, 373, 389, 479, 1021, 233, 647, 691, 487, 197, 419, 2459, 619, 389, 1543, 1021, 647, 691, 4349, 1019, 419, 4817, 6581, 3067, 2939, 6983, 2389, 8783, 1489, 2549, 2459, 2887, 11621
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A038025.

A038028 Position reached by frog in A038027 or 0 if none. A038026(A038027(n)).

Original entry on oeis.org

19, 28615021, 1013, 19, 43, 103, 3697, 631, 181, 4793, 3947, 43, 137, 149, 103, 65539, 83, 222841, 91316521, 439, 463, 433, 71, 281551, 233, 1201, 7537
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A038025.

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A038025 Winner of n-th Littlewood Frog Race.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 1, 1, 9, 10, 1, 12, 1, 1, 9, 1, 1, 1, 1, 4, 21, 22, 1, 24, 25, 1, 27, 27, 1, 1, 1, 16, 1, 16, 35, 32, 1, 38, 9, 10, 25, 33, 25, 1, 45, 27, 1, 25, 49, 44, 25, 24, 1, 1, 9, 34, 27, 1, 49, 24, 1, 58, 57, 64, 49, 8, 49, 65, 51, 48, 49, 72, 69, 68
Offset: 1

Views

Author

Keywords

Comments

For 0 < k <= n, gcd(n,k) = 1, let P(n,k) be the smallest prime of the form a*n+k, with a >= 0. "Frog" k0 is said to win "race" n if P(n,k0) is largest of the phi(n) values P(n,k).
In case of draws of P(n,k) values take the largest k. - R. J. Mathar, Jul 26 2015

Crossrefs

Cf. A038026, A038029 (records).

Programs

  • Maple
    A038025P := proc(n,k)
        local a;
        for a from 0 do
            if isprime(a*n+k) then
                return a;
            end if;
        end do:
    end proc:
    A038025 := proc(n)
        local a,phimax,phi,k ;
        a :=0 ;
        phimax := 0 ;
        for k from 1 to n do
            if igcd(k,n) = 1 then
                phi := A038025P(n,k) ;
                if phi >= phimax then
                    a := k;
                    phimax := phi;
                end if;
            end if;
        od;
        a ;
    end proc:
    seq(A038025(n),n=1..100) ; # R. J. Mathar, Jul 26 2015
  • Mathematica
    A038025P[n_, k_] := Module[{a}, For[a = 0, True, a++, If[PrimeQ[a n + k], Return[a]]]];
    A038025[n_] := Module[{a = 0, phiMax = 0, phi, k}, For[k = 1, k <= n, k++, If [GCD[k, n] == 1, phi = A038025P[n, k]; If[phi >= phiMax, a = k; phiMax = phi]]]; a];
    Array[A038025, 100] (* Jean-François Alcover, Apr 16 2020, after R. J. Mathar *)

A085420 For each n, let p(n,b) be the smallest prime in the arithmetic progression k*n+b, with k > 0. Then a(n) = max(p(n,b)) with 0 < b < n and gcd(b,n) = 1.

Original entry on oeis.org

2, 3, 7, 7, 19, 11, 29, 23, 43, 19, 71, 23, 103, 53, 43, 43, 103, 53, 191, 59, 97, 79, 233, 73, 269, 103, 173, 83, 317, 79, 577, 151, 227, 193, 239, 157, 439, 191, 233, 157, 587, 107, 467, 257, 389, 307, 967, 191, 613, 269, 421, 601, 659, 199, 353, 233, 433, 317, 709
Offset: 1

Views

Author

T. D. Noe, Jun 29 2003

Keywords

Comments

Linnik proved that there are n0 and L such that a(n) < n^L for all n > n0. It has been conjectured that a(n) < n^2. The sequence A034694 has the primes p(n,1).
a(n) is also the maximum term in row n of A060940, which defines a(1). A007918(n+1) is the minimum term in row n of A060940. - Seiichi Manyama, Apr 02 2018

Examples

			a(5) = 19 because p(5,1) = 11, p(5,2) = 7, p(5,3) = 13 and p(5,4) = 19.
		

References

  • P. Ribenboim, The New Book of Prime Number Records, Springer, 1996, pp. 277-284.

Crossrefs

A038026 is a lower bound.
Cf. A034694.

Programs

  • Mathematica
    minP[n_, a_] := Module[{k, p}, If[GCD[n, a]>1, p=0, k=1; While[ !PrimeQ[k*n+a], k++ ]; p=k*n+a]; p]; Table[Max[Table[minP[n, i], {i, n-1}]], {n, 2, 100}]
  • PARI
    p(n,b)=while(!isprime(b+=n),); ba(n)=my(t=p(n,1));for(b=2,n-1,if(gcd(n,b)==1,t=max(t,p(n,b))));t \\ Charles R Greathouse IV, Sep 08 2012

Extensions

a(1) defined via A060940 by Seiichi Manyama, Apr 02 2018

A358240 Consider all invertible residues mod n. For each residue, find the smallest product of three primes (A014612) which is in that residue class mod n. a(n) is the greatest of these.

Original entry on oeis.org

8, 27, 28, 45, 66, 175, 45, 105, 76, 171, 102, 325, 165, 261, 124, 273, 230, 385, 188, 369, 268, 255, 175, 475, 284, 549, 436, 477, 285, 1309, 332, 385, 430, 927, 318, 1127, 442, 639, 610, 657, 595, 1075, 742, 805, 724, 637, 646, 1705, 642, 741, 670, 1005, 885, 1435, 801, 1705, 1105, 873, 1004, 2821, 938, 873, 844
Offset: 1

Views

Author

Keywords

Examples

			The least product of 3 primes = 1 mod 3 is 28, while the least = 2 mod 3 is 8, so a(2) = 28.
		

Crossrefs

All terms are in A014612.

Programs

  • PARI
    firstTri(m)=my(mod=m.mod); forprime(p=2,, if(mod%p==0, next); forprime(q=2,p, if(mod%q==0, next); forprimestep(r=2,q,m/p/q, return(p*q*r))))
    a(n)=my(r=8); for(k=1,n-1, if(gcd(k,n)>1, next); r=max(firstTri(Mod(k,n)),r)); r

Formula

A result of Balasubramanian, Ramaré, & Srivastav proves that a(n) < n^e for each e > 9/2 and large enough n depending on e.

Extensions

Corrected by Charles R Greathouse IV, May 10 2023

A220533 a(n) is minimal number such that the set of all composite numbers <= a(n) contains complete residue system modulo n.

Original entry on oeis.org

4, 9, 8, 15, 12, 35, 14, 27, 20, 33, 24, 65, 26, 45, 32, 45, 36, 77, 38, 63, 44, 63, 46, 95, 48, 69, 56, 87, 60, 187, 62, 93, 64, 105, 72, 175, 74, 117, 80, 123, 84, 215, 86, 117, 92, 135, 94, 245, 96, 153, 104, 141, 106, 245, 108, 165, 116
Offset: 1

Views

Author

Vladimir Shevelev, Feb 20 2013

Keywords

Crossrefs

Programs

  • Maple
    A220533 := proc(n)
        local sco,c,ai,scor ;
        sco := {} ;
        for ai from 1 do
            sco := sco union {A002808(ai)} ;
            scor := convert( [seq(c mod n,c=sco)], set) ;
            if nops(scor) = n then
                return A002808(ai) ;
            end if;
        end do:
    end proc:
    seq(A220533(n),n=1..60) ; # R. J. Mathar, Feb 27 2013
  • Mathematica
    A002808[n_] := A002808[n] = Module[{a}, If[ n == 1 , 4, For[a = A002808[n-1] + 1 , True, a++, If[! PrimeQ[a], Return [a]]]]]; A220533[n_] := Module[{ sco, c, ai, scor}, sco = {}; For[ai = 1, True, ai++, AppendTo[sco, A002808[ai]] ; scor = Mod[#, n]& /@ sco // Union; If[Length[scor] == n , Return[A002808[ai]]]]]; Table[A220533[n], {n, 1, 57}] (* Jean-François Alcover, Feb 28 2013, translated from R. J. Mathar's Maple program *)

Formula

For odd n, a(n) <= 2n + 2; the equality holds if and only if n + 2 is prime.
a(n)<2*n for 25,33,49,... - R. J. Mathar and Vladimir Shevelev, Feb 28 2013

Extensions

Corrected and extended by R. J. Mathar, Feb 27 2013

A358242 Consider all invertible residues k mod n. For each such k, find the product of three primes p*q*r = k (mod n) with the smallest max {p, q, r}. Then a(n) is the largest such p over the considered k.

Original entry on oeis.org

2, 3, 7, 5, 11, 7, 5, 7, 7, 11, 7, 11, 11, 11, 13, 11, 13, 11, 11, 13, 17, 13, 13, 13, 19, 17, 17, 17, 13, 17, 17, 17, 19, 19, 29, 17, 17, 13, 23, 19, 23, 19, 23, 17, 29, 17, 23, 23, 23, 19, 23, 19, 23, 17, 31, 23, 29, 19, 29, 29, 29, 19, 23
Offset: 1

Views

Author

Keywords

Comments

This is an analog of Linnik's theorem for 3-almost primes. - Charles R Greathouse IV, Jun 30 2024

Examples

			From _M. F. Hasler_, Jul 02 2024: (Start)
For n = 1, there is only one residue class in Z/nZ = {Z}, and it is invertible (since 0 = 1 in this case), and p = q = r = 2 satisfies p*q*r = k (mod n) and gives clearly the smallest possible prime to satisfy the conditions, so a(1) = 2.
For n = 2, there is only one invertible residue class in Z/nZ, namely that of k = 1, and none of p, q, r may equal 2 (= 0 in Z/2Z) to yield p*q*r = 1 (mod n), so p = q = r = 3 is the smallest solution to p*q*r = 1 (mod n), whence a(2) = 3.
For n = 3, the two invertible residues (mod n) are k = 1 and k = 2. For p = q = r = 2, we have p*q*r = 8 = 2 (mod 3), but for the residue k = 1, we need a different solution, which therefore can't have as largest prime p = 2 (=> k = 2) nor p = 3 = 0 (mod 3) nor p = 5 = 2 (mod 3), but p = 7 >= q = r = 2 does work, with 4*7 = 28 = 1 (mod 3), so a(3) = 7. (End)
		

Crossrefs

Programs

  • PARI
    do(m)=my(mod=m.mod); forprime(p=2,, if(mod%p==0, next); forprime(q=2,p, if(mod%q==0, next); forprimestep(r=2,q,m/p/q, return(p))))
    a(n)=my(r=2); for(k=1,n-1, if(gcd(k,n)>1, next); r=max(do(Mod(k,n)),r)); r
    
  • PARI
    a(n)=my(N,s=eulerphi(n)); forprime(p=2,, if(n%p==0, next); forprime(q=2,p, if(n%q==0, next); my(pq=p*q%n); forprime(r=2,q, if(n%r==0, next); my(pqr=pq*r%n); if(bittest(N,pqr)==0, N+=1<Charles R Greathouse IV, Jun 30 2024

Formula

Balasubramanian, Ramaré, & Srivastav prove that a(n) < n^e for each e > 3/2 and large enough n depending on e.
Szabó improves this to e > 6/5. - Charles R Greathouse IV, Jun 30 2024

Extensions

Definition clarified by Charles R Greathouse IV and M. F. Hasler, Jul 02 2024
Showing 1-9 of 9 results.