A038207 Triangle whose (i,j)-th entry is binomial(i,j)*2^(i-j).
1, 2, 1, 4, 4, 1, 8, 12, 6, 1, 16, 32, 24, 8, 1, 32, 80, 80, 40, 10, 1, 64, 192, 240, 160, 60, 12, 1, 128, 448, 672, 560, 280, 84, 14, 1, 256, 1024, 1792, 1792, 1120, 448, 112, 16, 1, 512, 2304, 4608, 5376, 4032, 2016, 672, 144, 18, 1, 1024, 5120, 11520, 15360, 13440, 8064, 3360, 960, 180, 20, 1
Offset: 0
Examples
Triangle begins with T(0,0): 1; 2, 1; 4, 4, 1; 8, 12, 6, 1; 16, 32, 24, 8, 1; 32, 80, 80, 40, 10, 1; ... - corrected by _Clark Kimberling_, Aug 05 2011 Seen as an array read by descending antidiagonals: [0] 1, 2, 4, 8, 16, 32, 64, 128, 256, ... [A000079] [1] 1, 4, 12, 32, 80, 192, 448, 1024, 2304, ... [A001787] [2] 1, 6, 24, 80, 240, 672, 1792, 4608, 11520, ... [A001788] [3] 1, 8, 40, 160, 560, 1792, 5376, 15360, 42240, ... [A001789] [4] 1, 10, 60, 280, 1120, 4032, 13440, 42240, 126720, ... [A003472] [5] 1, 12, 84, 448, 2016, 8064, 29568, 101376, 329472, ... [A054849] [6] 1, 14, 112, 672, 3360, 14784, 59136, 219648, 768768, ... [A002409] [7] 1, 16, 144, 960, 5280, 25344, 109824, 439296, 1647360, ... [A054851] [8] 1, 18, 180, 1320, 7920, 41184, 192192, 823680, 3294720, ... [A140325] [9] 1, 20, 220, 1760, 11440, 64064, 320320, 1464320, 6223360, ... [A140354]
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 155.
- H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
- Peter Bala, A note on the diagonals of a proper Riordan Array
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Jhon J. Bravo, Jose L. Herrera, and José L. Ramírez, Combinatorial Interpretation of Generalized Pell Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.2.1.
- John Cartan, Starmaze: Cartan's Triangle.
- Tom Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras.
- B. N. Cyvin, J. Brunvoll, and S. J. Cyvin, Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), 109-121.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of Molecular Structure 376 (1996), 495-505.
- G. Dattoli, A. Mancho, M. Quattromini and A. Torre, Exponential operators, generalized polynomials and evolution problems, Radiation Physics and Chemistry 61 (2001), 99-108. [From _Tom Copeland_, Oct 25 2012]
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- W. G. Harter, Representations of multidimensional symmetries in networks, J. Math. Phys., 15 (1974), 2016-2021.
- Russell Jay Hendel, A Method for Uniformly Proving a Family of Identities, arXiv:2107.03549 [math.CO], 2021.
- Graham Hoare, Hypercubes and Chebyshev, Math. Gaz. 74 (470) (1990), 375-377.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Katarzyna Kril and Wojciech Mlotkowski, Permutations of Type B with Fixed Number of Descents and Minus Signs, The Electronic Journal of Combinatorics, Vol. 26(1) (2019), Article P1.27.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Thomas Selig and Haoyue Zhu, Complete non-ambiguous trees and associated permutations: connections through the Abelian sandpile model, arXiv:2303.15756 [math.CO], 2023, see p. 27.
- Wikipedia, Hypercube.
Crossrefs
Programs
-
GAP
Flat(List([0..15], n->List([0..n], k->Binomial(n, k)*2^(n-k)))); # Stefano Spezia, Nov 21 2018
-
Haskell
a038207 n = a038207_list !! n a038207_list = concat $ iterate ([2,1] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Haskell
a038207' n k = a038207_tabl !! n !! k a038207_row n = a038207_tabl !! n a038207_tabl = iterate f [1] where f row = zipWith (+) ([0] ++ row) (map (* 2) row ++ [0]) -- Reinhard Zumkeller, Feb 27 2013
-
Magma
/* As triangle */ [[(&+[Binomial(n,i)*Binomial(i,k): i in [k..n]]): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Nov 16 2018
-
Maple
for i from 0 to 12 do seq(binomial(i, j)*2^(i-j), j = 0 .. i) end do; # yields sequence in triangular form - Emeric Deutsch, Nov 04 2007 # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. PMatrix(10, n -> 2^(n-1)); # Peter Luschny, Oct 09 2022
-
Mathematica
Table[CoefficientList[Expand[(y + x + x^2)^n], y] /. x -> 1, {n, 0,10}] // TableForm (* Geoffrey Critzer, Nov 20 2011 *) Table[Binomial[n,k]2^(n-k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, May 22 2020 *)
-
PARI
{T(n, k) = polcoeff((x+2)^n, k)}; /* Michael Somos, Apr 27 2000 */
-
Sage
def A038207_triangle(dim): M = matrix(ZZ,dim,dim) for n in range(dim): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1]+2*M[n-1,k] return M A038207_triangle(9) # Peter Luschny, Sep 20 2012
Formula
T(n, k) = Sum_{i=0..n} binomial(n,i)*binomial(i,k).
T(n, k) = (-1)^k*A065109(n,k).
G.f.: 1/(1-2*z-t*z). - Emeric Deutsch, Nov 04 2007
Rows of the triangle are generated by taking successive iterates of (A135387)^n * [1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 09 2007
From the formalism of A133314, the e.g.f. for the row polynomials of A038207 is exp(x*t)*exp(2x). The e.g.f. for the row polynomials of the inverse matrix is exp(x*t)*exp(-2x). p iterates of the matrix give the matrix with e.g.f. exp(x*t)*exp(p*2x). The results generalize for 2 replaced by any number. - Tom Copeland, Aug 18 2008
Sum_{k=0..n} T(n,k)*x^k = (2+x)^n. - Philippe Deléham, Dec 15 2009
n-th row is obtained by taking pairwise sums of triangle A112857 terms starting from the right. - Gary W. Adamson, Feb 06 2012
T(n,n) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) for kJon Perry, Oct 11 2012
The e.g.f. for the n-th row is given by umbral composition of the normalized Laguerre polynomials A021009 as p(n,x) = L(n, -L(.,-x))/n! = 2^n L(n, -x/2)/n!. E.g., L(2,x) = 2 -4*x +x^2, so p(2,x)= (1/2)*L(2, -L(.,-x)) = (1/2)*(2*L(0,-x) + 4*L(1,-x) + L(2,-x)) = (1/2)*(2 + 4*(1+x) + (2+4*x+x^2)) = 4 + 4*x + x^2/2. - Tom Copeland, Oct 20 2012
From Tom Copeland, Oct 26 2012: (Start)
Let P and P^T be the Pascal matrix and its transpose and H= P^2= A038207.
Then with D the derivative operator,
exp(x*z/(1-2*z))/(1-2*z)= exp(2*z D_z z) e^(x*z)= exp(2*D_x (x D_x)) e^(z*x)
= (1 z z^2 z^3 ...) H (1 x x^2/2! x^3/3! ...)^T
= (1 x x^2/2! x^3/3! ...) H^T (1 z z^2 z^3 ...)^T
= Sum_{n>=0} z^n * 2^n Lag_n(-x/2)= exp[z*EF(.,x)], an o.g.f. for the f-vectors (rows) of A038207 where EF(n,x) is an e.g.f. for the n-th f-vector. (Lag_n(x) are the un-normalized Laguerre polynomials.)
Conversely,
exp(z*(2+x))= exp(2D_x) exp(x*z)= exp(2x) exp(x*z)
= (1 x x^2 x^3 ...) H^T (1 z z^2/2! z^3/3! ...)^T
= (1 z z^2/2! z^3/3! ...) H (1 x x^2 x^3 ...)^T
= exp(z*OF(.,x)), an e.g.f for the f-vectors of A038207 where
OF(n,x)= (2+x)^n is an o.g.f. for the n-th f-vector.
(End)
G.f.: R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ (1+y))*x/((2*k+2+ (1+y))*x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
A038207 = exp[M*B(.,2)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). B(n,2) = A001861(n). - Tom Copeland, Apr 17 2014
T = (A007318)^2 = A112857*|A167374| = |A118801|*|A167374| = |A118801*A167374| = |P*A167374*P^(-1)*A167374| = |P*NpdP*A167374|. Cf. A118801. - Tom Copeland, Nov 17 2016
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial 2^n*Sum_{k = 0..n} binomial(n,k)*x^k/k!. For example, the e.g.f. for the third subdiagonal is exp(x)*(8 + 24*x + 12*x^2 + 4*x^3/3) = 8 + 32*x + 80*x^2/2! + 160*x^3/3! + .... - Peter Bala, Mar 05 2017
T(3*k+2,k) = T(3*k+2,k+1), T(2*k+1,k) = 2*T(2*k+1,k+1). - Yuchun Ji, May 26 2020
From Robert A. Russell, Aug 05 2020: (Start)
G.f. for column k: x^k / (1-2*x)^(k+1).
E.g.f. for column k: exp(2*x) * x^k / k!. (End)
Also the array A(n, k) read by descending antidiagonals, where A(n, k) = (-1)^n*Sum_{j= 0..n+k} binomial(n + k, j)*hypergeom([-n, j+1], [1], 1). - Peter Luschny, Nov 09 2021
Comments