cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A049204 Duplicate of A045924.

Original entry on oeis.org

1, 2, 3, 4, 10, 70, 72, 182, 440, 1053, 6458, 6461, 6471, 40087, 40089, 251737
Offset: 1

Views

Author

Keywords

A004648 a(n) = prime(n) mod n.

Original entry on oeis.org

0, 1, 2, 3, 1, 1, 3, 3, 5, 9, 9, 1, 2, 1, 2, 5, 8, 7, 10, 11, 10, 13, 14, 17, 22, 23, 22, 23, 22, 23, 3, 3, 5, 3, 9, 7, 9, 11, 11, 13, 15, 13, 19, 17, 17, 15, 23, 31, 31, 29, 29, 31, 29, 35, 37, 39, 41, 39, 41, 41, 39, 45, 55, 55, 53, 53, 63, 65, 2, 69, 69, 71, 2, 3, 4, 3
Offset: 1

Views

Author

N. J. A. Sloane, Daniel Wild (wild(AT)edumath.u-strasbg.fr)

Keywords

Crossrefs

1's occur at A023143, 2's at A023144, 3's at A023145, 4's at A023146, 5's at A023147, 6's at A023148, 7's at A023149, 8's at A023150, 9's at A023151, 10's at A023152, == -1's at A045924.
For records see A127149, A127150.

Programs

  • Haskell
    a004648 n = a004648_list !! (n-1)
    a004648_list = zipWith mod a000040_list [1..]
    -- Reinhard Zumkeller, Jul 30 2012
    
  • Magma
    [(NthPrime(n) mod n): n in [1..100]]; // Vincenzo Librandi, Apr 06 2011
    
  • Maple
    A004648 := proc(n)
        modp(ithprime(n),n) ;
    end proc: # R. J. Mathar, Dec 02 2014
  • Mathematica
    Table[Mod[Prime[n], n], {n, 100}] (* Zak Seidov, Apr 25 2005 *)
  • PARI
    for(n=1,100,print1(prime(n)%n,","))
    
  • Python
    from sympy import prime; print([prime(i) % i for i in range(1, 101)]) # Jwalin Bhatt, Jul 29 2025
  • SageMath
    def A004648(n): return (nth_prime(n)%n)
    [A004648(n) for n in range(1,101)] # G. C. Greubel, Apr 20 2023
    

Formula

a(n) = prime(n) - n*floor(prime(n)/n)

Extensions

More terms from Clark Kimberling
Corrected by Jaroslav Krizek, Dec 16 2009

A023143 Numbers k such that prime(k) == 1 (mod k).

Original entry on oeis.org

1, 2, 5, 6, 12, 14, 181, 6459, 6460, 6466, 100362, 251712, 251732, 637236, 10553504, 10553505, 10553547, 10553827, 10553851, 10553852, 69709709, 69709724, 69709728, 69709869, 69709961, 69709962, 179992920, 179992922, 179993170, 465769815, 465769819, 465769840, 3140421737, 3140421744, 3140421767, 3140421892, 3140421935
Offset: 1

Views

Author

Keywords

Comments

A004648(a(n)) <= 1. - Reinhard Zumkeller, Jul 30 2012

Examples

			6 is in the sequence because the 6th prime, 13, is congruent to 1 (mod 6).
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a023143 n = a023143_list !! (n-1)
    a023143_list = 1 : map (+ 1) (elemIndices 1 a004648_list)
    -- Reinhard Zumkeller, Jul 30 2012, Jun 08 2011
    
  • Magma
    [n: n in [1..10000] | IsIntegral((NthPrime(n)-1)/n)]; // Marius A. Burtea, Dec 30 2018
  • Mathematica
    Do[ If[ IntegerQ[ (Prime[ n ] - 1) / n ], Print[ n ] ], {n, 1, 10^8} ]
  • PARI
    n=0; print1(1); forprime(p=2,1e9, if(p%n++==1, print1(", "n))) \\ Charles R Greathouse IV, Apr 28 2015
    
  • Python
    def A023143(end):
        primes=[2,3]
        a023143_list=[1]
        num=3
        while len(primes)<=end:
            num+=1
            prime=False
            length=len(primes)
            for y in range(0,length):
                if num % primes[y]!=0:
                    prime=True
                else:
                    prime=False
                    break
            if (prime):
                primes.append(num)
        for x in range(2, len(primes)):
            if (primes[x-1]%(x))==1:
                a023143_list.append(x)
        return a023143_list
    # Conner L. Delahanty, Apr 19 2014
    
  • Python
    from sympy import primerange
    def A023143(end): return [n+1 for n, p in enumerate(primerange(2, end)) if (p-1) % (n-1) == 0] # David Radcliffe, Jun 27 2016
    

Extensions

More terms from Jud McCranie, Dec 11 1999
a(30)-a(37) from Zak Seidov, Apr 19 2014
Terms a(33)-a(37) sorted in correct order by Giovanni Resta, Feb 23 2020

A092044 Numbers n such that prime(n) == -2 (mod n).

Original entry on oeis.org

1, 11, 71, 637319, 637323, 637327, 179993015, 1208198861, 8179002163, 8179002189, 55762149067, 55762149103, 6201265271239787, 43525513764814971, 43525513764815121, 2159986889494444325, 2159986889494445481, 2159986889494445499, 2159986889494447181
Offset: 1

Views

Author

Robert G. Wilson v, Feb 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == n - 2, Print[n]], {n, 1, 10^9}]
  • PARI
    for(i=1,10^9,if(Mod(prime(i),i)==-2,print1(i,",")));

Extensions

Corrected by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 20 2004
a(7)-a(12) from Robert G. Wilson v, Feb 22 2006
a(13)-a(19) from Giovanni Resta, Feb 23 2020

A048891 Primes that are congruent to 1 mod n, where n is the index of the prime.

Original entry on oeis.org

2, 3, 11, 13, 37, 43, 1087, 64591, 64601, 64661, 1304707, 3523969, 3524249, 9558541, 189963073, 189963091, 189963847, 189968887, 189969319, 189969337, 1394194181, 1394194481, 1394194561, 1394197381, 1394199221, 1394199241, 3779851321, 3779851363, 3779856571, 10246935931, 10246936019, 10246936481, 75370121689, 75370121857, 75370122409, 75370125409, 75370126441
Offset: 1

Views

Author

Keywords

Comments

Based on problem by G. L. Honaker, Jr.
A subsequence of A073465. - Ivan N. Ianakiev, Aug 06 2019

Examples

			13 is the 6th prime and 13 == 1 mod 6.
		

Crossrefs

Programs

  • Mathematica
    f[p_,n_]:=Mod[p,n]==0; lst={};Do[p=Prime[n];If[f[p-1,n],AppendTo[lst,p]],{n,10!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 08 2009 *)
  • PARI
    lista(nn) = forprime(p=1, nn, if (Mod(p, primepi(p)) == 1, print1(p, ", "))); \\ Michel Marcus, Jan 08 2015; Aug 06 2019

Formula

A087611(a(n)) = 0. - Reinhard Zumkeller, Sep 11 2003
a(n) = A000040(A023143(n)). - Zak Seidov, Feb 19 2015

Extensions

More terms from Zak Seidov, Feb 19 2015
Terms a(33)-a(37) sorted into correct order by Giovanni Resta, Feb 23 2020

A092045 Numbers n such that prime(n) == -3 (mod n).

Original entry on oeis.org

1, 2, 25, 26, 68, 1054, 1058, 6472, 251723, 4124468, 69709727, 69709942, 465769817, 465769835, 1208198860, 8179002154, 8179002176, 8179002178, 145935689360, 145935689369, 145935689392, 145935689393
Offset: 1

Views

Author

Robert G. Wilson v, Feb 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == n - 3, Print[n]], {n, 1, 10^9}]
    Join[{1,2},Select[Range[5 10^6],Mod[Prime[#],#]==#-3&]] (* Harvey P. Dale, Mar 29 2023 *)

Extensions

Corrected by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 20 2004
a(13)-a(22) from Robert G. Wilson v, Feb 22 2006

A092051 Numbers n such that prime(n) == -9 (mod n).

Original entry on oeis.org

1, 2, 4, 5, 17, 19, 20, 22, 23, 64, 1055, 1057, 6463, 251708, 251743, 251744, 251755, 251758, 27067054, 27067118, 27067138, 69709681, 69709703, 69709712, 145935689366, 382465573490, 382465573498, 6935812012621, 126979448983610, 885992692751476
Offset: 1

Views

Author

Robert G. Wilson v, Feb 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == n - 9, Print[n]], {n, 1, 10^9}]

Extensions

Corrected by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 20 2004
a(25) from Robert G. Wilson v, Feb 22 2006
Terms a(26) and beyond from Giovanni Resta, Feb 23 2020

A092046 Numbers n such that prime(n) == -4 (mod n).

Original entry on oeis.org

1, 3, 5, 7, 9, 67, 441, 2615, 637237, 637329, 4124703, 27067119, 179993017, 1208198617, 8179002101, 55762149071, 55762149091
Offset: 1

Views

Author

Robert G. Wilson v, Feb 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == n - 4, Print[n]], {n, 1, 10^9}]

Extensions

Corrected by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 20 2004
a(13)-a(17) from Robert G. Wilson v, Feb 22 2006

A092047 Numbers n such that prime(n) == -5 (mod n).

Original entry on oeis.org

1, 2, 4, 6, 8, 27, 28, 169, 183, 187, 188, 189, 438, 442, 1056, 1059, 40084, 40088, 40091, 40114, 40121, 100348, 251709, 4124588, 10553499, 10553853, 27066972, 179992914, 179992932, 179993012, 465769812, 1208198618, 1208198852
Offset: 1

Views

Author

Robert G. Wilson v, Feb 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == n - 5, Print[n]], {n, 1, 10^9}]

Extensions

Corrected by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 20 2004
a(28)-a(34) from Robert G. Wilson v, Feb 22 2006

A092048 Numbers n such that prime(n) == -6 (mod n).

Original entry on oeis.org

1, 439, 100349, 100361, 100363, 27066991, 27067117, 1208198633, 8179002133
Offset: 1

Views

Author

Robert G. Wilson v, Feb 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ If[ Mod[p = NextPrim[p], n] == n - 6, Print[n]], {n, 1, 10^9}]

Extensions

Corrected by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 20 2004
a(8)-a(9) from Robert G. Wilson v, Feb 22 2006
Showing 1-10 of 21 results. Next