A252664 Minimal nontrivial undulant (A046075) divisible by n, or 0 if no undulant is divisible by n.
101, 202, 141, 212, 505, 252, 161, 232, 171, 1010, 121, 252, 494, 252, 525, 272, 272, 252, 171, 2020, 252, 242, 161, 696, 525, 494, 2727, 252, 232, 3030, 434, 3232, 363, 272, 525, 252, 3737, 494, 585, 4040, 656, 252, 989, 484, 585, 414, 141, 4848, 343, 5050
Offset: 1
Examples
505 is the least entry of A046075 that is divisible by 5, so a(5) = 505. Since an undulant cannot end in 00, a(100)=0. - _Danny Rorabaugh_, Apr 22 2015
Links
- Reiner Moewald, Table of n, a(n) for n = 1..499
Crossrefs
Cf. A046075.
Programs
-
Python
feld = [] for n in range(3, 500): for a in range(1, 10): for b in range(10): if a != b: z_string = "" for pos in range(n): if pos % 2 == 0: z_string = z_string + str(a) else: z_string = z_string + str(b) z = int(z_string) feld.append(z) feld_length = len(feld) for z in range (1, 150): start = 0 while start < feld_length and feld[start] % z != 0: start = start + 1 if start < feld_length: print(z, feld[start])
Comments