cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A016945 a(n) = 6*n+3.

Original entry on oeis.org

3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297, 303, 309, 315, 321, 327
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(37).
Continued fraction expansion of tanh(1/3).
If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
Leaves of the Odd Collatz-Tree: a(n) has no odd predecessors in all '3x+1' trajectories where it occurs: A139391(2*k+1) <> a(n) for all k; A082286(n)=A006370(a(n)). - Reinhard Zumkeller, Apr 17 2008
Let random variable X have a uniform distribution on the interval [0,c] where c is a positive constant. Then, for positive integer n, the coefficient of determination between X and X^n is (6n+3)/(n+2)^2, that is, A016945(n)/A000290(n+2). Note that the result is independent of c. For the derivation of this result, see the link in the Links section below. - Dennis P. Walsh, Aug 20 2013
Positions of 3 in A020639. - Zak Seidov, Apr 29 2015
a(n+2) gives the sum of 6 consecutive terms of A004442 starting with A004442(n). - Wesley Ivan Hurt, Apr 08 2016
Numbers k such that Fibonacci(k) mod 4 = 2. - Bruno Berselli, Oct 17 2017
Also numbers k such that t^k == -1 (mod 7), where t is a member of A047389. - Bruno Berselli, Dec 28 2017

Crossrefs

Third row of A092260.
Subsequence of A061641; complement of A047263; bisection of A047241.
Cf. A000225. - Loren Pearson, Jul 02 2009
Cf. A020639. - Zak Seidov, Apr 29 2015
Odd numbers in A355200.

Programs

Formula

a(n) = 3*(2*n + 1) = 3*A005408(n), odd multiples of 3.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A103333(n+1). - Reinhard Zumkeller, Feb 24 2009
a(n) = 12*n - a(n-1) for n>0, a(0)=3. - Vincenzo Librandi, Nov 20 2010
G.f.: 3*(1+x)/(1-x)^2. - Mario C. Enriquez, Dec 14 2016
E.g.f.: 3*(1 + 2*x)*exp(x). - G. C. Greubel, Sep 18 2019
Sum_{n>=0} (-1)^n/a(n) = Pi/12 (A019679). - Amiram Eldar, Dec 10 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)/2 (A010503).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(3/2) (A115754). (End)
a(n) = (n+2)^2 - (n-1)^2. - Alexander Yutkin, Mar 15 2025

A047307 Numbers that are congruent to {3, 4, 5, 6} mod 7.

Original entry on oeis.org

3, 4, 5, 6, 10, 11, 12, 13, 17, 18, 19, 20, 24, 25, 26, 27, 31, 32, 33, 34, 38, 39, 40, 41, 45, 46, 47, 48, 52, 53, 54, 55, 59, 60, 61, 62, 66, 67, 68, 69, 73, 74, 75, 76, 80, 81, 82, 83, 87, 88, 89, 90, 94, 95, 96, 97, 101, 102, 103, 104, 108, 109, 110, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [3, 4, 5, 6]]; // Wesley Ivan Hurt, Jun 02 2016
  • Maple
    A047307:=n->(14*n+1-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8: seq(A047307(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
  • Mathematica
    Table[(14n+1-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 02 2016 *)
    LinearRecurrence[{1,0,0,1,-1},{3,4,5,6,10},70] (* Harvey P. Dale, Dec 28 2024 *)

Formula

G.f.: x*(3+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n+1-3*i^(2*n)-(3-3*i)*i^(-n)-(3+3*i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047288(k), a(2k-1) = A047389(k). (End)

A047362 Numbers that are congruent to {2, 3, 4, 5} mod 7.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 11, 12, 16, 17, 18, 19, 23, 24, 25, 26, 30, 31, 32, 33, 37, 38, 39, 40, 44, 45, 46, 47, 51, 52, 53, 54, 58, 59, 60, 61, 65, 66, 67, 68, 72, 73, 74, 75, 79, 80, 81, 82, 86, 87, 88, 89, 93, 94, 95, 96, 100, 101, 102, 103, 107, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 03 2016
  • Maple
    A047362:=n->(14*n-7-3*(I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n))/8: seq(A047362(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
  • Mathematica
    Select[Range[100], MemberQ[{2,3,4,5}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {2,3,4,5,9}, 60] (* Harvey P. Dale, Oct 03 2015 *)

Formula

G.f.: x*(2*x^2+3*x+2)*(x^2-x+1) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-7-3*(i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n))/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047348(k). (End)

A047365 Numbers that are congruent to {0, 3, 4, 5} mod 7.

Original entry on oeis.org

0, 3, 4, 5, 7, 10, 11, 12, 14, 17, 18, 19, 21, 24, 25, 26, 28, 31, 32, 33, 35, 38, 39, 40, 42, 45, 46, 47, 49, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 73, 74, 75, 77, 80, 81, 82, 84, 87, 88, 89, 91, 94, 95, 96, 98, 101, 102, 103, 105, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 04 2016
  • Maple
    A047365:=n->(14*n-11+I^(2*n)-(3+I)*I^(-n)-(3-I)*I^n)/8: seq(A047365(n), n=1..100); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,3,4,5}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,3,4,5,7}, 60] (* Harvey P. Dale, May 26 2012 *)

Formula

G.f.: x^2*(3+x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
a(1)=0, a(2)=3, a(3)=4, a(4)=5, a(5)=7, a(n)=a(n-1)+a(n-4)-a(n-5) for n>5. - Harvey P. Dale, May 26 2012
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = (14*n-11+i^(2*n)-(3+i)*i^(-n)-(3-i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047345(k). (End)

A047366 Numbers that are congruent to {1, 3, 4, 5} mod 7.

Original entry on oeis.org

1, 3, 4, 5, 8, 10, 11, 12, 15, 17, 18, 19, 22, 24, 25, 26, 29, 31, 32, 33, 36, 38, 39, 40, 43, 45, 46, 47, 50, 52, 53, 54, 57, 59, 60, 61, 64, 66, 67, 68, 71, 73, 74, 75, 78, 80, 81, 82, 85, 87, 88, 89, 92, 94, 95, 96, 99, 101, 102, 103, 106, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [1, 3, 4, 5]]; // Wesley Ivan Hurt, May 24 2016
  • Maple
    A047366:=n->(14*n-9-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047366(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
  • Mathematica
    Table[(14n-9-I^(2n)-(3-I)*I^(-n)-(3+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *)
    Select[Range@ 120, MemberQ[{1, 3, 4, 5}, Mod[#, 7]] &] (* Michael De Vlieger, May 24 2016 *)

Formula

G.f.: x*(1+2*x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-9-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047389(k), a(2k-1) = A047346(k). (End)
E.g.f.: (8 + sin(x) - 3*cos(x) + (7*x - 4)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, May 25 2016

Extensions

More terms from Wesley Ivan Hurt, May 24 2016
Showing 1-5 of 5 results.