cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A048059 Primes of the form k^2 + k + 11.

Original entry on oeis.org

11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 167, 193, 251, 283, 317, 353, 431, 563, 661, 823, 881, 941, 1201, 1493, 1571, 1733, 2081, 2267, 2663, 2767, 3203, 3433, 3671, 3793, 3917, 4567, 4703, 5413, 5711, 6173, 6491, 6653, 6983, 7151, 7321, 8753, 8941, 9323, 10111
Offset: 1

Views

Author

Keywords

Comments

From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n) := n^2 + n + 11 takes distinct prime values for the 10 consecutive integers n = 0 to 9. It follows that the polynomial P(n-10) = (n - 10)^2 + (n - 10) + 11 takes prime values for the 20 consecutive integers n = 0 to 19, consisting of the 10 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n-10) = 4*n^2 - 38*n + 101 also takes prime values for the 10 consecutive integers n = 0 to 9.
2)The polynomial P(3*n-10) = 9*n^2 - 57*n + 101 takes prime values for the 7 consecutive integers n = 0 to 6 (= floor(19/3)). In addition, calculation shows that P(3*n-10) also takes prime values for n from -3 to -1. Equivalently put, the polynomial P(3*n-19) = 9*n^2 - 111*n + 353 takes prime values for the 10 consecutive integers n = 0 to 9. Cf. A007635 and A005846. (End)

Crossrefs

Programs

Formula

a(n) = A048058(A048097(n)). - Elmo R. Oliveira, Apr 20 2025

A048058 a(n) = n^2 + n + 11.

Original entry on oeis.org

11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 121, 143, 167, 193, 221, 251, 283, 317, 353, 391, 431, 473, 517, 563, 611, 661, 713, 767, 823, 881, 941, 1003, 1067, 1133, 1201, 1271, 1343, 1417, 1493, 1571, 1651, 1733, 1817, 1903, 1991, 2081, 2173, 2267, 2363, 2461, 2561
Offset: 0

Views

Author

Keywords

Comments

Fontebasso lists this as a prime-generating polynomial due to Legendre, but doesn't give a reference. - Charles R Greathouse IV, Jun 30 2021

Crossrefs

Programs

Formula

For n > 4: a(n) = A176271(n+1,6). - Reinhard Zumkeller, Apr 13 2010
a(n) = 2*n + a(n-1) (with a(0)=11). - Vincenzo Librandi, Aug 06 2010
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(43)/2)/sqrt(43). - Amiram Eldar, Jan 17 2021
From Elmo R. Oliveira, Oct 28 2024: (Start)
G.f.: (11 - 20*x + 11*x^2)/(1 - x)^3.
E.g.f.: (11 + 2*x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A173752 a(n) = m-k where (prime(k), prime(m)) is the n-th prime pair (x^2-x+11, x^2+x+11), integer x >= 0.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 4, 3, 5, 7, 5, 5, 9, 8, 10, 17, 15, 15, 16, 15, 17, 18, 20, 23, 27, 25, 30, 27, 26, 30, 32, 39, 43, 49, 48, 55, 54, 48, 64, 66, 62, 61, 62, 68, 63, 65, 77, 65, 73, 79, 85, 73, 86, 93, 98, 84, 100, 107, 113, 110, 105, 107, 121, 119, 120, 119, 121, 125, 114
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 23 2010

Keywords

Comments

prime(j) is used here to refer to the j-th prime.

Examples

			The first prime pair (x^2-x+11, x^2+x+11) is obtained for x = 0: 0^2-0+11 = 11 and 0^2+0+11 = 11; 11 is the fifth prime, hence a(1) = 5-5 = 0.
The second prime pair is obtained for x = 1: 1^2-1+11 = 11 and 1^2+1+11 = 13; 11 is the fifth prime and 13 is the sixth prime, hence a(2) = 6-5 = 1.
The third prime pair is obtained for x = 2: 2^2-2+11 = 13 and 2^2+2+11 = 17; 13 is the sixth prime and 17 is the seventh prime, hence a(3) = 7-6 = 1.
The eleventh prime pair is obtained for x = 13: 13^2-13+11 = 167 and 13^2+13+11 = 193; 167 is prime(39) and 193 is prime(44), hence a(11) = 44-39 = 5.
		

Crossrefs

Cf. A048058 (n^2+n+11), A048059 (primes of the form n^2+n+11), A048097 (n such that n^2+n+11 is prime), A175154 (prime index of A048059(n)).

Programs

  • Magma
    PrimePi:=func< n | #PrimesUpTo(n) >; [ PrimePi(p)-PrimePi(q): x in [0..850] | IsPrime(p) and IsPrime(q) where p is x^2+x+11 where q is x^2-x+11 ]; // Klaus Brockhaus, Feb 27 2010
  • Maple
    for x from 0 to 1000 do mp := x^2+x+11 ; kp := x^2-x+11 ; if isprime(mp) and isprime(kp) then m := numtheory[pi](mp) ; k := numtheory[pi](kp) ; printf("%d,",m-k) ; end if; end do : # R. J. Mathar, Mar 01 2010
  • Mathematica
    pp[n_]:=Module[{c=n^2+11},If[AllTrue[c+{n,-n},PrimeQ],PrimePi[c+n]- PrimePi[ c-n],0]]; Join[{0},Array[pp,1000]/.(0->Nothing)] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 15 2017 *)

Extensions

Edited and extended by Klaus Brockhaus, Feb 27 2010
a(15) corrected and sequence extended by R. J. Mathar, Mar 01 2010

A184902 Primes that are not factors of m^2 + m + 11 (A048058).

Original entry on oeis.org

2, 3, 5, 7, 19, 29, 37, 61, 71, 73, 89, 113, 131, 137, 149, 151, 157, 163, 179, 191, 199, 211, 223, 227, 233, 241, 257, 263, 277, 313, 331, 347, 349, 373, 383, 389, 409, 419, 421, 433, 449, 457, 463, 467, 491, 499, 503, 521, 523, 571, 577
Offset: 1

Views

Author

Zak Seidov, May 18 2011

Keywords

Comments

The discriminant of this polynomial is -43. These are the primes that are not a square (mod 43). These primes are congruent to {2, 3, 5, 7, 8, 12, 18, 19, 20, 22, 26, 27, 28, 29, 30, 32, 33, 34, 37, 39, 42} (mod 43). - T. D. Noe, May 22 2011
Inert rational primes in the field Q(sqrt(-43)). - N. J. A. Sloane, Dec 25 2017

Crossrefs

Cf. A048058 (n^2 + n + 11), A048059 (primes of the form n^2 + n + 11), A048097 (n^2 + n + 11 is prime).

Programs

  • Mathematica
    Reap[Do[p = Prime[n]; ta = Table[Mod[m(m + 1) + 11, p],{m, 0, p/2 + 1}]; If[FreeQ[ta, 0], Sow[p]], {n, 1000}]][[2, 1]]
    Select[Prime[Range[100]], JacobiSymbol[#, 43] == -1 &] (* T. D. Noe, May 22 2011 *)

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, May 22 2011

A175154 a(n) = prime index of A048059(n).

Original entry on oeis.org

5, 6, 7, 9, 11, 13, 16, 19, 23, 26, 39, 44, 54, 61, 66, 71, 83, 103, 121, 143, 152, 160, 197, 238, 248, 270, 313, 336, 386, 403, 453, 481, 512, 527, 542, 619, 635, 714, 752, 804, 842, 857, 898, 915, 933, 1092, 1112, 1154, 1242, 1265, 1307, 1372, 1412, 1534, 1561
Offset: 1

Views

Author

Klaus Brockhaus, Feb 27 2010

Keywords

Comments

Indices of primes of the form n^2+n+11.
PrimePi(A048059(n)), where PrimePi(k) is the number of primes <= k (A000720).
prime(a(n)) = A048059(n).

Examples

			A048059(7) = 53 is the seventh prime of the form n^2+n+11; 53 has prime index 16 (PrimePi(53) = 16, prime(16) = 53). Hence a(7) = 16.
		

Crossrefs

Cf. A048058 (n^2+n+11), A048097 (n such that n^2+n+11 is prime), A048059 (primes of the form n^2+n+11), A000720 (PrimePi(n), number of primes <= n), A173752.

Programs

  • Magma
    PrimePi:=func< n | #PrimesUpTo(n) >; [ PrimePi(p): x in [0..120] | IsPrime(p) where p is x^2+x+11 ];

Formula

a(n) = A000720(A048059(n)).

A253239 Numbers k such that k^2 + k + 72491 is prime.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 55, 56, 57, 58, 59, 64, 65, 66, 67, 72, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 100
Offset: 1

Views

Author

Eric Chen, Apr 19 2015

Keywords

Comments

Of the first 10000 natural numbers, 4534 are in this sequence, making the density about 45%, quite large! (However, 72491 is not prime; it equals 71*1021, so no multiples of 71 or 1021 are in this sequence.)

Examples

			k       k^2 + k + 72491
0       72491 = 71*1021
1       72493 (prime)
2       72497 (prime)
3       72503 (prime)
4       72511 = 59*1229
5       72521 = 47*1543
6       72533 (prime)
7       72547 (prime)
8       72563 = 149*487
9       72581 = 181*401
etc.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] | IsPrime(n^2 + n + 72491)]; // Vincenzo Librandi, Apr 20 2015
  • Maple
    select(t -> isprime(t^2+t+72491), [$0..100]);
  • Mathematica
    Select[Range[100], PrimeQ[#^2 + # + 72491] &]
  • PARI
    v=[ ]; for(n=0, 100, if(isprime(n^2+n+72491), v=concat(v, n), )); v
    
Showing 1-6 of 6 results.