cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A175154 a(n) = prime index of A048059(n).

Original entry on oeis.org

5, 6, 7, 9, 11, 13, 16, 19, 23, 26, 39, 44, 54, 61, 66, 71, 83, 103, 121, 143, 152, 160, 197, 238, 248, 270, 313, 336, 386, 403, 453, 481, 512, 527, 542, 619, 635, 714, 752, 804, 842, 857, 898, 915, 933, 1092, 1112, 1154, 1242, 1265, 1307, 1372, 1412, 1534, 1561
Offset: 1

Views

Author

Klaus Brockhaus, Feb 27 2010

Keywords

Comments

Indices of primes of the form n^2+n+11.
PrimePi(A048059(n)), where PrimePi(k) is the number of primes <= k (A000720).
prime(a(n)) = A048059(n).

Examples

			A048059(7) = 53 is the seventh prime of the form n^2+n+11; 53 has prime index 16 (PrimePi(53) = 16, prime(16) = 53). Hence a(7) = 16.
		

Crossrefs

Cf. A048058 (n^2+n+11), A048097 (n such that n^2+n+11 is prime), A048059 (primes of the form n^2+n+11), A000720 (PrimePi(n), number of primes <= n), A173752.

Programs

  • Magma
    PrimePi:=func< n | #PrimesUpTo(n) >; [ PrimePi(p): x in [0..120] | IsPrime(p) where p is x^2+x+11 ];

Formula

a(n) = A000720(A048059(n)).

A005846 Primes of the form k^2 + k + 41.

Original entry on oeis.org

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601, 1847, 1933, 2111, 2203, 2297, 2393, 2591, 2693, 2797
Offset: 1

Views

Author

Keywords

Comments

Note that 41 is the largest of Euler's Lucky numbers (A014556). - Lekraj Beedassy, Apr 22 2004
a(n) = A117530(13, n) for n <= 13: a(1) = A117530(13, 1) = A014556(6) = 41, A117531(13) = 13. - Reinhard Zumkeller, Mar 26 2006
The link to E. Wegrzynowski contains the following incorrect statement: "It is possible to find a polynomial of the form n^2 + n + B that gives prime numbers for n = 0, ..., A, A being any number." It is known that the maximum is A = 39 for B = 41. - Luis Rodriguez (luiroto(AT)yahoo.com), Jun 22 2008
Contrary to the last comment, Mollin's Theorem 2.1 shows that any A is possible if the Prime k-tuples Conjecture is assumed. - T. D. Noe, Aug 31 2009
a(n) can be generated by a recurrence based on the gcd in the type of Eric Rowland and Aldrich Stevens. See the recurrence in PARI under PROG. - Mike Winkler, Oct 02 2013
These primes are not prime in O_(Q(sqrt(-163))). Given p = n^2 + n + 41, we have ((2*n + 1)/2 - sqrt(-163)/2)*((2*n + 1)/2 + sqrt(-163)/2) = p, e.g., 1601 = 39^2 + 39 + 41 = (79/2 - sqrt(-163)/2)*(79/2 + sqrt(-163)/2). - Alonso del Arte, Nov 03 2017
From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n) := n^2 + n + 41 takes distinct prime values for the 40 consecutive integers n = 0 to 39. It follows that the polynomial P(n-40) takes prime values for the 80 consecutive integers n = 0 to 79, consisting of the 40 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n-40) = 4*n^2 - 158*n + 1601 also takes prime values for the 40 consecutive integers n = 0 to 39.
2) The polynomial P(3*n-40) = 9*n^2 - 237*n + 1601 takes prime values for the 27 consecutive integers n = 0 to 26 ( = floor(79/3)). In addition, calculation shows that P(3*n-40) also takes prime values for n from -13 to -1. Equivalently put, the polynomial P(3*n-79) = 9*n^2 - 471*n + 6203 takes prime values for the 40 consecutive integers n = 0 to 39. This result is due to Higgins. Cf. A007635 and A048059. (End)

Examples

			a(39) = 1601 = 39^2 + 39 + 41 is in the sequence because it is prime.
1681 = 40^2 + 40 + 41 is not in the sequence because 1681 = 41*41.
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 225.
  • R. K. Guy, Unsolved Problems Number Theory, Section A1.
  • O. Higgins, Another long string of primes, J. Rec. Math., 14 (1981/2) 185.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 137.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 139, 149.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 115.

Crossrefs

Intersection of A000040 and A202018; A010051.
Cf. A048059.

Programs

  • GAP
    Filtered(List([0..100],n->n^2+n+41),IsPrime); # Muniru A Asiru, Apr 22 2018
    
  • Haskell
    a005846 n = a005846_list !! (n-1)
    a005846_list = filter ((== 1) . a010051) a202018_list
    -- Reinhard Zumkeller, Dec 09 2011
    
  • Magma
    [a: n in [0..55] | IsPrime(a) where a is n^2+n+ 41]; // Vincenzo Librandi, Apr 24 2018
  • Maple
    for y from 0 to 10 do
    U := y^2+y+41;
    if isprime(U) = true then print(U) end if ;
    end do:
    # Matt C. Anderson, Jan 04 2013
  • Mathematica
    Select[Table[n^2 + n + 41, {n, 0, 59}],PrimeQ] (* Alonso del Arte, Dec 08 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(k=n^2+n+41),print1(k", "))) \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    {k=2; n=1; for(x=1, 100000, f=x^2+x+41; g=x^2+3*x+43; a=gcd(f, g-k); if(a>1, k=k+2); if(a==x+2-k/2, print(n" "a); n++))} \\ Mike Winkler, Oct 02 2013
    

Formula

a(n) = A056561(n)^2 + A056561(n) + 41.

Extensions

More terms from Henry Bottomley, Jun 26 2000

A007635 Primes of form n^2 + n + 17.

Original entry on oeis.org

17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 359, 397, 479, 523, 569, 617, 719, 773, 829, 887, 947, 1009, 1277, 1423, 1499, 1657, 1823, 1997, 2087, 2179, 2273, 2467, 2879, 3209, 3323, 3557, 3677, 3923, 4049, 4177, 4987, 5273
Offset: 1

Views

Author

Keywords

Comments

a(n) = A117530(7,n) for n <= 7: a(1) = A117530(7,1) = A014556(5) = 17, A117531(7) = 7. - Reinhard Zumkeller, Mar 26 2006
Note that the gaps between terms increases by 2*k from k = 1 to 15: 19 - 17 = 2, 23 - 19 = 4, 29 - 23 = 6 and so on until 257 - 227 = 30 then fails at 289 - 257 = 32 since 289 = 17^2. - J. M. Bergot, Mar 18 2017
From Peter Bala, Apr 15 2018: (Start)
The polynomial P(n):= n^2 + n + 17 takes distinct prime values for the 16 consecutive integers n = 0 to 15. It follows that the polynomial P(n - 16) takes prime values for the 32 consecutive integers n = 0 to 31, consisting of the 16 primes above each taken twice. We note two consequences of this fact.
1) The polynomial P(2*n - 16) = 4*n^2 - 62*n + 257 also takes prime values for the 16 consecutive integers n = 0 to 15.
2)The polynomial P(3*n - 16) = 9*n^2 - 93*n + 257 takes prime values for the 11 consecutive integers n = 0 to 10 ( = floor(31/3)). In addition, calculation shows that P(3*n-16) also takes prime values for n from -5 to -1. Equivalently put, the polynomial P(3*n-31) = 9*n^2 - 183*n + 947 takes prime values for the 16 consecutive integers n = 0 to 15. Cf. A005846 and A048059. (End)
The primes in this sequence are not primes in the ring of integers of Q(sqrt(-67)). If p = n^2 + n + 17, then ((2n + 1)/2 - sqrt(-67)/2)((2n + 1)/2 + sqrt(-67)/2) = p. For example, 3^2 + 3 + 17 = 29 and (7/2 - sqrt(-67)/2)(7/2 + sqrt(-67)/2) = 29 also. - Alonso del Arte, Nov 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 115.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 96.

Crossrefs

Programs

  • Magma
    [a: n in [0..250]|IsPrime(a) where a is n^2+n+17]; // Vincenzo Librandi, Dec 23 2010
    
  • Mathematica
    Select[Table[n^2 + n + 17, {n, 0, 99}], PrimeQ] (* Alonso del Arte, Nov 27 2019 *)
  • PARI
    select(isprime, vector(100,n,n^2+n+17)) \\ Charles R Greathouse IV, Jul 12 2016
    
  • Python
    from sympy import isprime
    it = (n**2 + n + 17 for n in range(250))
    print([p for p in it if isprime(p)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = A028823(n)^2 + A028823(n) + 17. - Seiichi Manyama, Mar 19 2017

A050267 Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.

Original entry on oeis.org

10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
Offset: 1

Views

Author

Keywords

Comments

Terms are listed in the order of their appearance in sequence b.
This is a transformed version of the polynomial P(x) = 47*x^2 + 9*x - 5209 whose absolute value gives 43 distinct primes for -24 <= x <= 18, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane, May 10 2007
Further edited by Klaus Brockhaus, Mar 20 2010
More terms (to distinguish from quadratic) from Charles R Greathouse IV, Jun 18 2017

A048058 a(n) = n^2 + n + 11.

Original entry on oeis.org

11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 121, 143, 167, 193, 221, 251, 283, 317, 353, 391, 431, 473, 517, 563, 611, 661, 713, 767, 823, 881, 941, 1003, 1067, 1133, 1201, 1271, 1343, 1417, 1493, 1571, 1651, 1733, 1817, 1903, 1991, 2081, 2173, 2267, 2363, 2461, 2561
Offset: 0

Views

Author

Keywords

Comments

Fontebasso lists this as a prime-generating polynomial due to Legendre, but doesn't give a reference. - Charles R Greathouse IV, Jun 30 2021

Crossrefs

Programs

Formula

For n > 4: a(n) = A176271(n+1,6). - Reinhard Zumkeller, Apr 13 2010
a(n) = 2*n + a(n-1) (with a(0)=11). - Vincenzo Librandi, Aug 06 2010
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(43)/2)/sqrt(43). - Amiram Eldar, Jan 17 2021
From Elmo R. Oliveira, Oct 28 2024: (Start)
G.f.: (11 - 20*x + 11*x^2)/(1 - x)^3.
E.g.f.: (11 + 2*x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A048097 Numbers k such that k^2 + k + 11 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, 20, 23, 25, 28, 29, 30, 34, 38, 39, 41, 45, 47, 51, 52, 56, 58, 60, 61, 62, 67, 68, 73, 75, 78, 80, 81, 83, 84, 85, 93, 94, 96, 100, 101, 103, 106, 108, 113, 114, 122, 123, 124, 125, 127, 130, 135
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A117530 Triangle read by rows: T(n,k) = k^2 - k + prime(n), 1<=k<=n.

Original entry on oeis.org

2, 3, 5, 5, 7, 11, 7, 9, 13, 19, 11, 13, 17, 23, 31, 13, 15, 19, 25, 33, 43, 17, 19, 23, 29, 37, 47, 59, 19, 21, 25, 31, 39, 49, 61, 75, 23, 25, 29, 35, 43, 53, 65, 79, 95, 29, 31, 35, 41, 49, 59, 71, 85, 101, 119, 31, 33, 37, 43, 51, 61, 73, 87, 103, 121, 141, 37, 39, 43, 49, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 25 2006

Keywords

Comments

A117531 gives the number of primes in the n-th row;
if T(n,1) is a Lucky Number of Euler then A117531(n)=n, see A014556.

Examples

			T(5,k)=A048058(k)=A048059(k), 1<=k<=5: T(5,1)=A014556(4)=11;
T(7,k)=A007635(k), 1<=k<=7: T(7,1)=A014556(5)=17;
T(13,k)=A005846(k), 1<=k<=13: T(13,1)=A014556(6)=41.
		

Crossrefs

Programs

Formula

T(n,1) = A000040(k).
T(n,2) = A052147(k) for k>1.
For 1

A160548 Primes of the form k^2 + k + 844427.

Original entry on oeis.org

844427, 844429, 844433, 844439, 844447, 844457, 844469, 844483, 844499, 844517, 844609, 844733, 844769, 844847, 845027, 845129, 845183, 845357, 845833, 845909, 845987, 846067, 846149, 846233, 846407, 846589, 846779, 846877, 846977, 847079, 847507, 847967, 848087
Offset: 1

Author

Arkadiusz Wesolowski, May 18 2009

Keywords

Comments

844427 is the fourth term of A190800 and of A191456. - Arkadiusz Wesolowski, Jun 25 2011

Crossrefs

Programs

  • Magma
    [n^2+n+844427 : n in [0..60] | IsPrime(n^2+n+844427)]; // Bruno Berselli, Feb 23 2011
    
  • Mathematica
    Select[Table[n^2 + n + 844427, {n, 0, 60}], PrimeQ] (* Arkadiusz Wesolowski, Mar 04 2011 *)
  • PARI
    for(n=0, 60, if(isprime(x=(n^2+n+844427)), print1(x, ", "))); \\ Arkadiusz Wesolowski, Mar 02 2011
    
  • PARI
    select(isprime, vector(1000, n, n^2+n+844427)) \\ Charles R Greathouse IV, Feb 23 2011

A302445 Triangle read by rows: row n gives primes of form k^2 + n - k for 0 < k < n.

Original entry on oeis.org

2, 3, 5, 5, 7, 11, 17, 7, 13, 19, 37, 11, 29, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 13, 19, 43, 103, 17, 71, 197, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 19, 31, 61, 109, 151, 229, 23, 41, 131, 293, 401, 23, 29, 43, 53, 79, 113, 179, 233, 263, 443
Offset: 2

Author

Seiichi Manyama, Apr 08 2018

Keywords

Examples

			  n\k|  1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16
  ---+-----------------------------------------------------------------------
    2|  2;
    3|  3,  5;
    4|
    5|  5,  7, 11, 17;
    6|
    7|  7,   , 13, 19,   , 37;
    8|
    9|   , 11,   ,   , 29,   ,   ,   ;
   10|
   11| 11, 13, 17, 23, 31, 41, 53, 67, 83, 101;
   12|
   13| 13,   , 19,   ,   , 43,   ,   ,   , 103,    ,    ;
   14|
   15|   , 17,   ,   ,   ,   ,   , 71,   ,    ,    ,    ,    , 197;
   16|
   17| 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
		

Crossrefs

Row n: A027753 (n=3), A027755 (n=5), A048059 (n=11), A007635 (n=17), A005846 (n=41).

Programs

  • GAP
    a:=Filtered(Flat(List([1..10],n->List([1..n],k->k^2+n-k))),IsPrime); # Muniru A Asiru, Apr 09 2018
  • Mathematica
    Map[Union@ Select[#, PrimeQ] &, Table[k^2 + n - k, {n, 23}, {k, 0, n}]] // Flatten (* Michael De Vlieger, Apr 10 2018 *)

A128878 Primes of the form 47*n^2 - 1701*n + 10181.

Original entry on oeis.org

10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387, 34057, 36821, 39679, 45677, 48817, 52051, 65927, 81307, 89561, 102647, 107197, 116579, 126337, 131357
Offset: 1

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 17 2007

Keywords

Comments

Primes are given in the order in which they arise for increasing n.
Polynomial generates 22 primes for 0 <= n <= 42, i.e., for n = 0, 1, 2, 3, 4, 5, 6, 7, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42.
If the definition is replaced by "Numbers n of the form 47*k^2 - 1701*k + 10181 such that either n or -n is a prime" we get (essentially) A050267.

Examples

			47k^2 - 1701k + 10181 = 21647 for k = 42.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, ISBN 0-387-20860-7, Section A17, page 59.

Programs

  • Mathematica
    Select[Table[47*n^2 - 1701*n + 10181, {n, 0, 100}], # > 0 && PrimeQ[#] &] (* T. D. Noe, Aug 02 2011 *)

Extensions

Edited by Klaus Brockhaus, Apr 22 2007 and by N. J. A. Sloane, May 05 2007 and May 06 2007
Showing 1-10 of 16 results. Next