2, 3, 5, 5, 7, 11, 7, 9, 13, 19, 11, 13, 17, 23, 31, 13, 15, 19, 25, 33, 43, 17, 19, 23, 29, 37, 47, 59, 19, 21, 25, 31, 39, 49, 61, 75, 23, 25, 29, 35, 43, 53, 65, 79, 95, 29, 31, 35, 41, 49, 59, 71, 85, 101, 119, 31, 33, 37, 43, 51, 61, 73, 87, 103, 121, 141, 37, 39, 43, 49, 57
Offset: 1
T(5,k)=A048058(k)=A048059(k), 1<=k<=5: T(5,1)=A014556(4)=11;
T(7,k)=A007635(k), 1<=k<=7: T(7,1)=A014556(5)=17;
T(13,k)=A005846(k), 1<=k<=13: T(13,1)=A014556(6)=41.
A160548
Primes of the form k^2 + k + 844427.
Original entry on oeis.org
844427, 844429, 844433, 844439, 844447, 844457, 844469, 844483, 844499, 844517, 844609, 844733, 844769, 844847, 845027, 845129, 845183, 845357, 845833, 845909, 845987, 846067, 846149, 846233, 846407, 846589, 846779, 846877, 846977, 847079, 847507, 847967, 848087
Offset: 1
-
[n^2+n+844427 : n in [0..60] | IsPrime(n^2+n+844427)]; // Bruno Berselli, Feb 23 2011
-
Select[Table[n^2 + n + 844427, {n, 0, 60}], PrimeQ] (* Arkadiusz Wesolowski, Mar 04 2011 *)
-
for(n=0, 60, if(isprime(x=(n^2+n+844427)), print1(x, ", "))); \\ Arkadiusz Wesolowski, Mar 02 2011
-
select(isprime, vector(1000, n, n^2+n+844427)) \\ Charles R Greathouse IV, Feb 23 2011
A302445
Triangle read by rows: row n gives primes of form k^2 + n - k for 0 < k < n.
Original entry on oeis.org
2, 3, 5, 5, 7, 11, 17, 7, 13, 19, 37, 11, 29, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 13, 19, 43, 103, 17, 71, 197, 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 19, 31, 61, 109, 151, 229, 23, 41, 131, 293, 401, 23, 29, 43, 53, 79, 113, 179, 233, 263, 443
Offset: 2
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
---+-----------------------------------------------------------------------
2| 2;
3| 3, 5;
4|
5| 5, 7, 11, 17;
6|
7| 7, , 13, 19, , 37;
8|
9| , 11, , , 29, , , ;
10|
11| 11, 13, 17, 23, 31, 41, 53, 67, 83, 101;
12|
13| 13, , 19, , , 43, , , , 103, , ;
14|
15| , 17, , , , , , 71, , , , , , 197;
16|
17| 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
-
a:=Filtered(Flat(List([1..10],n->List([1..n],k->k^2+n-k))),IsPrime); # Muniru A Asiru, Apr 09 2018
-
Map[Union@ Select[#, PrimeQ] &, Table[k^2 + n - k, {n, 23}, {k, 0, n}]] // Flatten (* Michael De Vlieger, Apr 10 2018 *)
A128878
Primes of the form 47*n^2 - 1701*n + 10181.
Original entry on oeis.org
10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387, 34057, 36821, 39679, 45677, 48817, 52051, 65927, 81307, 89561, 102647, 107197, 116579, 126337, 131357
Offset: 1
Douglas Winston (douglas.winston(AT)srupc.com), Apr 17 2007
47k^2 - 1701k + 10181 = 21647 for k = 42.
- R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, ISBN 0-387-20860-7, Section A17, page 59.
Cf.
A050267,
A002383,
A027753,
A027755,
A005471,
A027758,
A048059,
A007635,
A005846,
A116206,
A050268,
A022464.
-
Select[Table[47*n^2 - 1701*n + 10181, {n, 0, 100}], # > 0 && PrimeQ[#] &] (* T. D. Noe, Aug 02 2011 *)
Comments