cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A051106 Second diagonal of triangle A048601.

Original entry on oeis.org

1, 3, 14, 105, 1287, 26026, 873392, 48825972, 4559177300, 712438499850, 186574469114250, 81973527087903750, 60475684628083567500, 74966560165861256115000, 156232609877290216839177600
Offset: 2

Views

Author

Keywords

Programs

  • Mathematica
    Table[n*(2*n-3)!/(n-2)! * Product[((3*k + 1)!/(n + k)!), {k, 0, n-2}], {n, 2, 20}] (* Vaclav Kotesovec, Oct 26 2017 *)

Formula

a(n) ~ Pi^(1/3) * exp(1/36) * 3^(3*n^2/2 - 3*n + 47/36) * n^(31/36) / (A^(1/3) * Gamma(1/3)^(2/3) * 2^(2*n^2 - 4*n + 31/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2017

Extensions

More terms from James Sellers

A005130 Robbins numbers: a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!; also the number of descending plane partitions whose parts do not exceed n; also the number of n X n alternating sign matrices (ASM's).

Original entry on oeis.org

1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700, 31095744852375, 12611311859677500, 8639383518297652500, 9995541355448167482000, 19529076234661277104897200, 64427185703425689356896743840, 358869201916137601447486156417296
Offset: 0

Views

Author

Keywords

Comments

Also known as the Andrews-Mills-Robbins-Rumsey numbers. - N. J. A. Sloane, May 24 2013
An alternating sign matrix is a matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign.
a(n) is odd iff n is a Jacobsthal number (A001045) [Frey and Sellers, 2000]. - Gary W. Adamson, May 27 2009

Examples

			G.f. = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 429*x^5 + 7436*x^6 + 218348*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 71, 557, 573.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; A_n on page 4, D_r on page 197.
  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, Chapter 75, pp. 385-386.
  • C. A. Pickover, Wonders of Numbers, "Princeton Numbers", Chapter 83, Oxford Univ. Press NY 2001.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=List([0..18],n->Product([0..n-1],k->Factorial(3*k+1)/Factorial(n+k)));; Print(a); # Muniru A Asiru, Jan 02 2019
    
  • Maple
    A005130 := proc(n) local k; mul((3*k+1)!/(n+k)!,k=0..n-1); end;
    # Bill Gosper's approximation (for n>0):
    a_prox := n -> (2^(5/12-2*n^2)*3^(-7/36+1/2*(3*n^2))*exp(1/3*Zeta(1,-1))*Pi^(1/3)) /(n^(5/36)*GAMMA(1/3)^(2/3)); # Peter Luschny, Aug 14 2014
  • Mathematica
    f[n_] := Product[(3k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Jul 15 2004 *)
    a[ n_] := If[ n < 0, 0, Product[(3 k + 1)! / (n + k)!, {k, 0, n - 1}]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=0, n-1, (3*k + 1)! / (n + k)!))}; /* Michael Somos, Aug 30 2003 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = Vec( (1 - (1 - 9*x + O(x^(2*n)))^(1/3)) / (3*x)); matdet( matrix(n, n, i, j, A[i+j-1])) / 3^binomial(n,2))}; /* Michael Somos, Aug 30 2003 */
    
  • Python
    from math import prod, factorial
    def A005130(n): return prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)) # Chai Wah Wu, Feb 02 2022

Formula

a(n) = Product_{k=0..n-1} (3k+1)!/(n+k)!.
The Hankel transform of A025748 is a(n) * 3^binomial(n, 2). - Michael Somos, Aug 30 2003
a(n) = sqrt(A049503).
From Bill Gosper, Mar 11 2014: (Start)
A "Stirling's formula" for this sequence is
a(n) ~ 3^(5/36+(3/2)*n^2)/(2^(1/4+2*n^2)*n^(5/36))*(exp(zeta'(-1))*gamma(2/3)^2/Pi)^(1/3).
which gives results which are very close to the true values:
1.0063254118710128, 2.003523267231662,
7.0056223910285915, 42.01915917750558,
429.12582410098327, 7437.518404899576,
218380.8077275304, 1.085146545456063*^7,
9.119184824937415*^8
(End)
a(n+1) = a(n) * n! * (3*n+1)! / ((2*n)! * (2*n+1)!). - Reinhard Zumkeller, Sep 30 2014; corrected by Eric W. Weisstein, Nov 08 2016
For n>0, a(n) = 3^(n - 1/3) * BarnesG(n+1) * BarnesG(3*n)^(1/3) * Gamma(n)^(1/3) * Gamma(n + 1/3)^(2/3) / (BarnesG(2*n+1) * Gamma(1/3)^(2/3)). - Vaclav Kotesovec, Mar 04 2021

A006366 Number of cyclically symmetric plane partitions in the n-cube; also number of 2n X 2n half-turn symmetric alternating sign matrices divided by number of n X n alternating sign matrices.

Original entry on oeis.org

1, 2, 5, 20, 132, 1452, 26741, 826540, 42939620, 3752922788, 552176360205, 136830327773400, 57125602787130000, 40191587143536420000, 47663133295107416936400, 95288872904963020131203520, 321195665986577042490185260608
Offset: 0

Views

Author

Keywords

Comments

In the 1995 Encyclopedia of Integer Sequences this sequence appears twice, as both M1529 and M1530.

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.7) on page 198, except the formula given is incorrect. It should be as shown here.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Crossrefs

Programs

  • Maple
    A006366 := proc(n) local i, j; mul((3*i - 1)*mul((n + i + j - 1)/(2*i + j - 1), j = i .. n)/(3*i - 2), i = 1 .. n) end;
  • Mathematica
    Table[Product[(3i-1)/(3i-2) Product[(n+i+j-1)/(2i+j-1),{j,i,n}],{i,n}],{n,0,20}] (* Harvey P. Dale, Apr 17 2013 *)
  • PARI
    a(n)=prod(i=0,n-1,(3*i+2)*(3*i)!/(n+i)!)

Formula

a(n) = Product_{i=1..n} (((3*i-1)/(3*i-2))*Product_{j=i..n} (n+i+j-1)/(2*i+j-1)).
a(n) ~ exp(1/36) * GAMMA(1/3)^(4/3) * n^(7/36) * 3^(3*n^2/2 + 11/36) / (A^(1/3) * Pi^(2/3) * 2^(2*n^2 + 7/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A029638 Numbers in the (1,2)-Pascal triangle A029635 that are different from 1.

Original entry on oeis.org

2, 2, 3, 2, 4, 5, 2, 5, 9, 7, 2, 6, 14, 16, 9, 2, 7, 20, 30, 25, 11, 2, 8, 27, 50, 55, 36, 13, 2, 9, 35, 77, 105, 91, 49, 15, 2, 10, 44, 112, 182, 196, 140, 64, 17, 2, 11, 54, 156, 294, 378, 336, 204, 81, 19, 2, 12, 65, 210, 450, 672, 714, 540, 285, 100, 21, 2, 13, 77, 275, 660, 1122
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  2;
  3,  2;
  4,  5,  2;
  5,  9,  7,  2;
  6, 14, 16,  9,  2;
  7, 20, 30, 25, 11,  2;
  ...
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; triangle on page 6, denominators.

Crossrefs

Extensions

More terms from David W. Wilson
Leading 2 inserted as consequence of change in A029635 by Sean A. Irvine, Mar 01 2020

A029656 Numbers in the (2,1)-Pascal triangle A029653 that are different from 1.

Original entry on oeis.org

2, 2, 3, 2, 5, 4, 2, 7, 9, 5, 2, 9, 16, 14, 6, 2, 11, 25, 30, 20, 7, 2, 13, 36, 55, 50, 27, 8, 2, 15, 49, 91, 105, 77, 35, 9, 2, 17, 64, 140, 196, 182, 112, 44, 10, 2, 19, 81, 204, 336, 378, 294, 156, 54, 11, 2, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 2, 23, 121, 385
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  2;
  2,  3;
  2,  5,  4;
  2,  7,  9,  5;
  2,  9, 16, 14,  6;
  2, 11, 25, 30, 20,  7;
  ...
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; triangle on page 6, numerators.

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[n + 2, k + 1] + Binomial[n + 1, k] + Binomial[n, k] - Binomial[n, k + 1])/2, {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 29 2018 *)

Formula

From Thomas Baruchel, Jun 26 2018: (Start)
a(n,k) = (binomial(n+2,k+1) + binomial(n+1,k) + binomial(n,k) - binomial(n,k+1))/2.
a(n,k) = binomial(n-1,k-1) + binomial(n-1,k) + binomial(n,k-1) + binomial(n,k). (End)

Extensions

More terms from James Sellers

A210697 Triangle read by rows, arising in study of alternating-sign matrices.

Original entry on oeis.org

1, 1, 1, 2, 5, 2, 9, 36, 36, 9, 90, 495, 855, 495, 90, 2025, 14175, 34830, 34830, 14175, 2025, 102060, 867510, 2776032, 4082400, 2776032, 867510, 102060
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2012

Keywords

Comments

See Mills et al., pp. 353-354 and 359 for precise definition. As of 1983 no formula was known for these numbers.
These are the values of a bivariate generating function for the ASMs by numbers of entries equal to -1 and by position of 1 in the first row (see Example section). Here weight x=3 is chosen, giving a decomposition of the 3-enumeration of the n X n ASMs.
As a triangle of coefficients of polynomials, A210697 has interesting properties relating the (2n+1)-th row and the n-th row (see Mills et al., p. 359).

Examples

			The bivariate g.f. as a table of polynomials.
(degree of x is the count of -1 entries in the ASM)
Setting x=k gives the k-enumeration of the ASMs
n
1 | 1
2 | 1, 1
3 | 2, 2+x, 2
4 | 6+x, 6+7*x+x^2, 6+7*x+x^2, 6+x
5 | 24 + 16*x + 2*x^2, 24 + 52*x + 26*x^2 + 3*x^3, 24 + 64*x + 38*x^2 +
  |      8*x^3 + x^4, 24 + 52*x + 26*x^2 + 3*x^3, 24 + 16*x + 2*x^2
...
Triangle begins:
n
1 |    1
2 |    1     1
3 |    2     5     2
4 |    9    36    36     9
5 |   90   495   855   495    90
6 | 2025 14175 34830 34830 14175  2025
...
		

Crossrefs

A048601 is the version for x=1.
As for A048601, the row sums A059477 are equal to the first column, shifted by one.

Extensions

More terms, definitions and examples by Olivier Gérard, Apr 02 2015

A173312 Partial sums of A005130.

Original entry on oeis.org

1, 2, 4, 11, 53, 482, 7918, 226266, 11076482, 922911942, 130457184642, 31226202037017, 12642538061714517, 8652026056359367017, 10004193381504526849017, 19539080428042781631746217
Offset: 0

Views

Author

Jonathan Vos Post, Feb 16 2010

Keywords

Comments

Partial sums of Robbins numbers. Partial sums of the number of descending plane partitions whose parts do not exceed n. Partial sums of the number of n X n alternating sign matrices (ASM's). After 2, 11, 53, when is this partial sum again prime, as it is not again prime through a(32)?

Examples

			a(17) = 1 + 1 + 2 + 7 + 42 + 429 + 7436 + 218348 + 10850216 + 911835460 + 129534272700 + 31095744852375 + 12611311859677500 + 8639383518297652500 + 9995541355448167482000 + 19529076234661277104897200 + 64427185703425689356896743840 + 358869201916137601447486156417296.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Product[(3 k + 1)!/(j + k)!, {k, 0, j - 1}], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 26 2017 *)
    Accumulate[Table[Product[(3k+1)!/(n+k)!,{k,0,n-1}],{n,0,20}]] (* Harvey P. Dale, Feb 06 2019 *)

Formula

a(n) = Sum_{i=0..n} A005130(i) = Sum_{i=0..n} Product_{k=0..i-1} (3k+1)!/(i+k)!. [corrected by Vaclav Kotesovec, Oct 26 2017]
a(n) ~ Pi^(1/3) * exp(1/36) * 3^(3*n^2/2 - 7/36) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36) * 2^(2*n^2 - 5/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2017

A102610 Triangle read by rows: coefficients of characteristic polynomials of lower triangular matrix of Robbins triangle numbers.

Original entry on oeis.org

0, 1, -1, 1, -2, 1, 1, -4, 5, -2, 1, -11, 33, -37, 14, 1, -53, 495, -1423, 1568, -588, 1, -482, 23232, -213778, 612035, -673260, 252252, 1, -7918, 3607384, -172966930, 1590265243, -4551765520, 5006613612, -1875745872, 1, -226266, 1732486848, -787838048562, 37768573496883, -347235787044084
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 30 2005

Keywords

Comments

Roots of n-th characteristic polynomial are the first n Robbins numbers (A005130).
Second column of triangle is partial sums of Robbins numbers negated (A173312).

Examples

			Generation of the triangle:
We begin with A048601
1
1 1
2 3 2
7 14 14 7
42 105 135 105 42
...
and get polynomials
x - 1
x^2 - 2*x + 1
x^3 - 4*x^2 + 5*x - 2
x^4 - 11*x^3 + 33*x^2 - 37*x + 14
x^5 - 53*x^4 + 495*x^3 - 1423*x^2 + 1568*x - 588
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = binomial(n+k-2,k-1)*((2*n-k-1)!/(n-k)!)*prod(j=0,n-2,((3*j+1)!/(n+j)!))
    RM(n)=M=matrix(n,n);for(l=1,n, for(k=1,l,M[l,k]=T(l,k)));M
    for(i=1,10,print(charpoly(RM(i))))

Extensions

Sequence has been prepended with a(0)=0 to enable table display (so offset has been set to 0 accordingly) by Michel Marcus, Aug 23 2013

A155901 Arise in p-adic valuations of sequences counting alternating sign matrices.

Original entry on oeis.org

2, 8, 5, 12, 5, 14, 8, 14
Offset: 1

Views

Author

Jonathan Vos Post, Jan 30 2009

Keywords

Comments

These are the values from Table 1 p.14 of Sun and Moll.

Examples

			a(7) = 8 because "the eight solutions to Nu(T(n)) = 7 are 26, 38, 46, 82, 5462, 10922, 10924 and J_15 - 1 = 21844" where J_k = k-th Jacobsthal number = A001045(k).
		

References

  • D. Bressoud, Proofs and Confirmations: the story of the Alternating Sign Matrix Conjecture, Cambridge University Press, 1999.

Crossrefs

Showing 1-9 of 9 results.